Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity

  1. Kasparas Petkevicius  Is a corresponding author
  2. Sam Virtue
  3. Guillaume Bidault
  4. Benjamin Jenkins
  5. Cankut Çubuk
  6. Cecilia Morgantini
  7. Myriam Aouadi
  8. Joaquin Dopazo
  9. Mireille J Serlie
  10. Albert Koulman
  11. Antonio Vidal-Puig  Is a corresponding author
  1. University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, United Kingdom
  2. Fundación Progreso y Salud, CDCA, Hospital Virgen del Rocio, Spain
  3. INB-ELIXIR-es, FPS, Hospital Virgen del Rocio, Spain
  4. Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Spain
  5. Karolinska Institutet, Sweden
  6. Amsterdam University Medical Center, Netherlands
  7. Wellcome Trust Sanger Institute, United Kingdom

Decision letter

  1. Michael Czech
    Reviewing Editor; University of Massachusetts Medical School, United States
  2. Satyajit Rath
    Senior Editor; Indian Institute of Science Education and Research (IISER), India

In the interests of transparency, eLife includes the editorial decision letter and accompanying author responses. A lightly edited version of the letter sent to the authors after peer review is shown, indicating the most substantive concerns; minor comments are not usually included.

Thank you for submitting your article "Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity" for consideration by eLife. Your article has been reviewed by two peer reviewers, one of whom is a member of our Board of Reviewing Editors, and the evaluation has been overseen by Satyajit Rath as the Senior Editor. The reviewers have opted to remain anonymous.

The reviewers have discussed the reviews with one another and the Reviewing Editor has drafted this decision to help you prepare a revised submission.

The reviewers agree that your study showing that increased turnover of phosphatidylcholine in macrophages has a role in adipose tissue inflammation is novel and important for the field. This opens a new path for exploration of an important topic. The data provided substantiate this conclusion.

However, there is one issue that was raised that deserves your attention and some revision in the manuscript prior to acceptance. The effects shown on systemic metabolism are very small (Figure 2) in this ob/ob mouse model, raising the question of whether there is a major impact on insulin resistance. It would be helpful if experiments were also conducted in the HFD mouse model which may show larger effects. Alternatively, if you have data on p-AKT blots to indicate the extent to which insulin signaling is effected in the ob model, including it would enhance the clarification of this issue, If such data are available, please include, or please add additional text in the Discussion directed to the importance of further investigation of this topic in the future.

https://doi.org/10.7554/eLife.47990.038

Author response

There is one issue that was raised that deserves your attention and some revision in the manuscript prior to acceptance. The effects shown on systemic metabolism are very small (Figure 2) in this ob/ob mouse model, raising the question of whether there is a major impact on insulin resistance. It would be helpful if experiments were also conducted in the HFD mouse model which may show larger effects. Alternatively, if you have data on p-AKT blots to indicate the extent to which insulin signaling is effected in the ob model, including it would enhance the clarification of this issue, If such data are available, please include, or please add additional text in the Discussion directed to the importance of further investigation of this topic in the future.

We thank the reviewers for expressing their interest in our study and their positive feedback.

We agree that the effect sizes observed in ob/ob mice are small. In response to reviewers suggestion, we have produced p-AKT Western blots of gastrocnemius muscles and livers isolated from ob/ob mice carrying LysM-Cre Pcyt1afl/fl and control bone marrow and included them in the revised manuscript (Figure 3—figure supplement 3). These new data show that loss of Pcyt1a in macrophages does not affect liver insulin AKT phosphorylation and, while it appears to have some effect on muscle insulin sensitivity, AKT phosphorylation is more variable than in WAT and does not reach statistical significance. These results are in good accordance with the GTT and ITT data.

We have also included additional discussion regarding the effect sizes in the revised manuscript, noting the relatively low penetrance of the Pcyt1a knockout in macrophages. Finally, we have linked the discussion between the specificity of the effects observed in our mouse model, in terms of Pcyt1a deletion having different effects on specific macrophage populations, to the phenotypes of PCYT1A human mutations, where despite it being expressed in almost every cell, loss of function PCYT1A mutations only impact certain tissues and organs. We proposed to study this topic further in future.

https://doi.org/10.7554/eLife.47990.039

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kasparas Petkevicius
  2. Sam Virtue
  3. Guillaume Bidault
  4. Benjamin Jenkins
  5. Cankut Çubuk
  6. Cecilia Morgantini
  7. Myriam Aouadi
  8. Joaquin Dopazo
  9. Mireille J Serlie
  10. Albert Koulman
  11. Antonio Vidal-Puig
(2019)
Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity
eLife 8:e47990.
https://doi.org/10.7554/eLife.47990

Share this article

https://doi.org/10.7554/eLife.47990