Evolutionary emergence of Hairless as a novel component of the Notch signaling pathway

  1. Steve W Miller
  2. Artem Movsesyan
  3. Sui Zhang
  4. Rosa Fernández
  5. James W Posakony  Is a corresponding author
  1. University of California, San Diego, United States
  2. Center for Genomic Regulation, Spain

Abstract

Suppressor of Hairless [Su(H)], the transcription factor at the end of the Notch pathway in Drosophila, utilizes the Hairless protein to recruit two co-repressors, Groucho (Gro) and C-terminal Binding Protein (CtBP), indirectly. Hairless is present only in the Pancrustacea, raising the question of how Su(H) in other protostomes gains repressive function. We show that Su(H) from a wide array of arthropods, molluscs, and annelids includes motifs that directly bind Gro and CtBP; thus, direct co-repressor recruitment is ancestral in the protostomes. How did Hairless come to replace this ancestral paradigm? Our discovery of a protein (S-CAP) in Myriapods and Chelicerates that contains a motif similar to the Su(H)-binding domain in Hairless has revealed a likely evolutionary connection between Hairless and Metastasis-associated (MTA) protein, a component of the NuRD complex. Sequence comparison and widely conserved microsynteny suggest that S-CAP and Hairless arose from a tandem duplication of an ancestral MTA gene.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Steve W Miller

    Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7610-6336
  2. Artem Movsesyan

    Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sui Zhang

    Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rosa Fernández

    Bioinformatics and Genomics Unit, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. James W Posakony

    Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    For correspondence
    jposakony@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6377-1732

Funding

National Institute of General Medical Sciences (R01GM046993)

  • James W Posakony

National Institute of General Medical Sciences (R01GM120377)

  • James W Posakony

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patricia J Wittkopp, University of Michigan, United States

Version history

  1. Received: May 3, 2019
  2. Accepted: September 23, 2019
  3. Accepted Manuscript published: September 23, 2019 (version 1)
  4. Version of Record published: October 4, 2019 (version 2)
  5. Version of Record updated: October 8, 2019 (version 3)

Copyright

© 2019, Miller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,567
    views
  • 224
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Steve W Miller
  2. Artem Movsesyan
  3. Sui Zhang
  4. Rosa Fernández
  5. James W Posakony
(2019)
Evolutionary emergence of Hairless as a novel component of the Notch signaling pathway
eLife 8:e48115.
https://doi.org/10.7554/eLife.48115

Share this article

https://doi.org/10.7554/eLife.48115

Further reading

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.