Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in the outward-facing conformation

Abstract

Alanine-serine-cysteine transporter 2 (ASCT2, SLC1A5) is the primary transporter of glutamine in cancer cells and regulates the mTORC1 signaling pathway. The SLC1A5 function involves finely tuned orchestration of two domain movements that include the substrate-binding transport domain and the scaffold domain. Here, we present cryo-EM structures of human SLC1A5 and its complex with the substrate, L-glutamine in an outward-facing conformation. These structures reveal insights into the conformation of the critical ECL2a loop which connects the two domains, thus allowing rigid body movement of the transport domain throughout the transport cycle. Furthermore, the structures provide new insights into substrate recognition, which involves conformational changes in the HP2 loop. A putative cholesterol binding site was observed near the domain interface in the outward-facing state. Comparison with the previously determined inward-facing structure of SCL1A5 provides a basis for a more integrated understanding of substrate recognition and transport mechanism in the SLC1 family.

Data availability

All the cryo-EM data were deposited to the Protein Data Bank (PDB ID: 6MP6, 6MPB) and the EMDB (EMD-9187, EMD-9188) for immediate release upon publication.

The following data sets were generated

Article and author information

Author details

  1. Xiaodi Yu

    Medicine Design, Pfizer Inc, Groton, United States
    Competing interests
    Xiaodi Yu, is affiliated with Pfizer Inc. The author has no other competing interests to declare..
  2. Olga Plotnikova

    Medicine Design, Pfizer Inc, Groton, United States
    Competing interests
    Olga Plotnikova, is affiliated with Pfizer Inc. The author has no other competing interests to declare..
  3. Paul D Bonin

    Medicine Design, Pfizer Inc, Groton, United States
    Competing interests
    Paul D Bonin, is affiliated with Pfizer Inc. The author has no other competing interests to declare..
  4. Timothy A Subashi

    Medicine Design, Pfizer Inc, Groton, United States
    Competing interests
    Timothy A Subashi, is affiliated with Pfizer Inc. The author has no other competing interests to declare..
  5. Thomas J McLellan

    Medicine Design, Pfizer Inc, Groton, United States
    Competing interests
    Thomas J McLellan, is affiliated with Pfizer Inc. The author has no other competing interests to declare..
  6. Darren Dumlao

    Medicine Design, Pfizer Inc, Groton, United States
    Competing interests
    Darren Dumlao, is affiliated with Pfizer Inc. The author has no other competing interests to declare..
  7. Ye Che

    Medicine Design, Pfizer Inc, Groton, United States
    Competing interests
    Ye Che, is affiliated with Pfizer Inc. The author has no other competing interests to declare..
  8. Yin Yao Dong

    Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Elisabeth P Carpenter

    Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  10. Graham M West

    Medicine Design, Pfizer Inc, Groton, United States
    Competing interests
    Graham M West, is affiliated with Pfizer Inc. The author has no other competing interests to declare..
  11. Xiayang Qiu

    Medicine Design, Pfizer Inc, Groton, United States
    Competing interests
    Xiayang Qiu, is affiliated with Pfizer Inc. The author has no other competing interests to declare..
  12. Jeffrey S Culp

    Medicine Design, Pfizer Inc, Groton, United States
    Competing interests
    Jeffrey S Culp, is affiliated with Pfizer Inc. The author has no other competing interests to declare..
  13. Seungil Han

    Medicine Design, Pfizer Inc, Groton, United States
    For correspondence
    seungil.han@pfizer.com
    Competing interests
    Seungil Han, is affiliated with Pfizer Inc. The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1070-3880

Funding

Y.D. and E.P.C. are members of the SGC, (Charity ref: 1097737) funded by AbbVie, Bayer Pharma AG, Boehringer Ingelheim, the Canada Foundation for Innovation, Genome Canada, GlaxoSmithKline, Janssen, Lilly Canada, Merck & Co., Novartis, the Ontario Ministry of Economic Development and Innovation, Pfizer, São Paulo Research Foundation-FAPESP and Takeda, as well as the Innovative Medicines Initiative Joint Undertaking ULTRA-DD grant 115766 and the Wellcome Trust106169/Z/14/Z.

Reviewing Editor

  1. Lucy Forrest, National Institute of Neurological Disorders and Stroke, United States

Publication history

  1. Received: May 1, 2019
  2. Accepted: October 2, 2019
  3. Accepted Manuscript published: October 3, 2019 (version 1)
  4. Version of Record published: October 18, 2019 (version 2)

Copyright

© 2019, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,263
    Page views
  • 741
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaodi Yu
  2. Olga Plotnikova
  3. Paul D Bonin
  4. Timothy A Subashi
  5. Thomas J McLellan
  6. Darren Dumlao
  7. Ye Che
  8. Yin Yao Dong
  9. Elisabeth P Carpenter
  10. Graham M West
  11. Xiayang Qiu
  12. Jeffrey S Culp
  13. Seungil Han
(2019)
Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in the outward-facing conformation
eLife 8:e48120.
https://doi.org/10.7554/eLife.48120

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Atefeh Rafiei et al.
    Research Article Updated

    Doublecortin (DCX) is a microtubule (MT)-associated protein that regulates MT structure and function during neuronal development and mutations in DCX lead to a spectrum of neurological disorders. The structural properties of MT-bound DCX that explain these disorders are incompletely determined. Here, we describe the molecular architecture of the DCX–MT complex through an integrative modeling approach that combines data from X-ray crystallography, cryo-electron microscopy, and a high-fidelity chemical crosslinking method. We demonstrate that DCX interacts with MTs through its N-terminal domain and induces a lattice-dependent self-association involving the C-terminal structured domain and its disordered tail, in a conformation that favors an open, domain-swapped state. The networked state can accommodate multiple different attachment points on the MT lattice, all of which orient the C-terminal tails away from the lattice. As numerous disease mutations cluster in the C-terminus, and regulatory phosphorylations cluster in its tail, our study shows that lattice-driven self-assembly is an important property of DCX.

    1. Structural Biology and Molecular Biophysics
    Siyoung Kim et al.
    Research Article Updated

    Lipid droplets (LDs) are organelles formed in the endoplasmic reticulum (ER) to store triacylglycerol (TG) and sterol esters. The ER protein seipin is key for LD biogenesis. Seipin forms a cage-like structure, with each seipin monomer containing a conserved hydrophobic helix and two transmembrane (TM) segments. How the different parts of seipin function in TG nucleation and LD budding is poorly understood. Here, we utilized molecular dynamics simulations of human seipin, along with cell-based experiments, to study seipin’s functions in protein–lipid interactions, lipid diffusion, and LD maturation. An all-atom simulation indicates that seipin TM segment residues and hydrophobic helices residues located in the phospholipid tail region of the bilayer attract TG. Simulating larger, growing LDs with coarse-grained models, we find that the seipin TM segments form a constricted neck structure to facilitate conversion of a flat oil lens into a budding LD. Using cell experiments and simulations, we also show that conserved, positively charged residues at the end of seipin’s TM segments affect LD maturation. We propose a model in which seipin TM segments critically function in TG nucleation and LD growth.