Age-dependent deterioration of nuclear pore assembly in mitotic cells decreases transport dynamics

Abstract

Nuclear transport is facilitated by the Nuclear Pore Complex (NPC) and is essential for life in eukaryotes. The NPC is a long-lived and exceptionally large structure. We asked whether NPC quality control is compromised in aging mitotic cells. Our images of single yeast cells during aging, show that the abundance of several NPC components and NPC assembly factors decreases. Additionally, the single cell life histories reveal that cells that better maintain those components are longer lived. The presence of herniations at the nuclear envelope of aged cells suggests that misassembled NPCs are accumulated in aged cells. Aged cells show decreased dynamics of transcription factor shuttling and increased nuclear compartmentalisation. These functional changes are likely caused by the presence of misassembled NPCs, as we find that two NPC assembly mutants show similar transport phenotypes as aged cells. We conclude that NPC interphase assembly is a major challenge for aging mitotic cells.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Irina L Rempel

    European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  2. Matthew M Crane

    Department of Pathology, University of Washington, Seattle, United States
    For correspondence
    nomad.crane@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6234-0954
  3. David J Thaller

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3577-5562
  4. Ankur Mishra

    Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  5. Daniel PM Jansen

    European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  6. Georges Janssens

    European Research Institute for the Biology of Ageing, , University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  7. Petra Popken

    European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  8. Arman Akşit

    European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9053-701X
  9. Matt Kaeberlein

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    Matt Kaeberlein, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-3421
  10. Erik van der Giessen

    Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8369-2254
  11. Anton Steen

    European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  12. Patrick R Onck

    Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  13. C Patrick Lusk

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4703-0533
  14. Liesbeth M Veenhoff

    European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
    For correspondence
    l.m.veenhoff@rug.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0158-4728

Funding

Netherlands Organization for Scientific Research (ALWOP.2015.053)

  • Liesbeth M Veenhoff

Netherlands Organization for Scientific Research (ECHO.711.013.008)

  • Liesbeth M Veenhoff

National Institutes of Health (NIH GM 105672)

  • C Patrick Lusk

National Institutes of Health (T32GM007223)

  • C Patrick Lusk

Ubbo Emmius Fund

  • Liesbeth M Veenhoff

University of Groningen and University Medical Center Groningen (Graduate Student Fellowship)

  • Patrick R Onck

Netherlands Organization for Scientific Research (SURFsara)

  • Patrick R Onck

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Rempel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,483
    views
  • 639
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irina L Rempel
  2. Matthew M Crane
  3. David J Thaller
  4. Ankur Mishra
  5. Daniel PM Jansen
  6. Georges Janssens
  7. Petra Popken
  8. Arman Akşit
  9. Matt Kaeberlein
  10. Erik van der Giessen
  11. Anton Steen
  12. Patrick R Onck
  13. C Patrick Lusk
  14. Liesbeth M Veenhoff
(2019)
Age-dependent deterioration of nuclear pore assembly in mitotic cells decreases transport dynamics
eLife 8:e48186.
https://doi.org/10.7554/eLife.48186

Share this article

https://doi.org/10.7554/eLife.48186

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.