Adaptive substitutions underlying cardiac glycoside insensitivity in insects exhibit epistasis in vivo

  1. Andrew M Taverner
  2. Lu Yang
  3. Zachary J Barile
  4. Becky Lin
  5. Julie Peng  Is a corresponding author
  6. Ana P Pinharanda
  7. Arya S Rao
  8. Bartholomew P Roland
  9. Aaron D Talsma
  10. Daniel Wei
  11. Georg Petschenka
  12. MIchael J Palladino  Is a corresponding author
  13. Peter Andolfatto  Is a corresponding author
  1. Princeton University, United States
  2. University of Pittsburgh, United States
  3. Columbia University, United States
  4. Justus-Liebig-Universität Gießen, Germany

Abstract

Predicting how species will respond to selection pressures requires understanding the factors that constrain their evolution. We use genome engineering of Drosophila to investigate constraints on the repeated evolution of unrelated herbivorous insects to toxic cardiac glycosides, which primarily occurs via a small subset of possible functionally-relevant substitutions to Na+,K+-ATPase. Surprisingly, we find that frequently observed adaptive substitutions at two sites, 111 and 122, are lethal when homozygous and adult heterozygotes exhibit dominant neural dysfunction. We identify a phylogenetically correlated substitution, A119S, that partially ameliorates the deleterious effects of substitutions at 111 and 122. Despite contributing little to cardiac glycoside-insensitivity in vitro, A119S, like substitutions at 111 and 122, substantially increases adult survivorship upon cardiac glycoside exposure. Our results demonstrate the importance of epistasis in constraining adaptive paths. Moreover, by revealing distinct effects of substitutions in vitro and in vivo, our results underscore the importance of evaluating the fitness of adaptive substitutions and their interactions in whole organisms.

Data availability

Sequence data as been deposited in Genbank and the details of all accession numbers of this and previously published data are tabulated in Supplementary Table S1.

The following data sets were generated

Article and author information

Author details

  1. Andrew M Taverner

    Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8265-6836
  2. Lu Yang

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zachary J Barile

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Becky Lin

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Julie Peng

    Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
    For correspondence
    jzpeng@Princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Ana P Pinharanda

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Arya S Rao

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3007-4812
  8. Bartholomew P Roland

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Aaron D Talsma

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Wei

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Georg Petschenka

    Institute for Insect Biotechnology, Justus-Liebig-Universität Gießen, Hesse, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. MIchael J Palladino

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsbugh, United States
    For correspondence
    mjp44@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
  13. Peter Andolfatto

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    pa2543@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3393-4574

Funding

National Institutes of Health (R01 GM115523)

  • Peter Andolfatto

National Institutes of Health (T32 GM008424)

  • Bartholomew P Roland

National Institutes of Health (R01 GM108073)

  • MIchael J Palladino

National Institutes of Health (R01 AG027453)

  • MIchael J Palladino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Taverner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,003
    views
  • 405
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew M Taverner
  2. Lu Yang
  3. Zachary J Barile
  4. Becky Lin
  5. Julie Peng
  6. Ana P Pinharanda
  7. Arya S Rao
  8. Bartholomew P Roland
  9. Aaron D Talsma
  10. Daniel Wei
  11. Georg Petschenka
  12. MIchael J Palladino
  13. Peter Andolfatto
(2019)
Adaptive substitutions underlying cardiac glycoside insensitivity in insects exhibit epistasis in vivo
eLife 8:e48224.
https://doi.org/10.7554/eLife.48224

Share this article

https://doi.org/10.7554/eLife.48224

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Giulia Ferraretti, Paolo Abondio ... Marco Sazzini
    Research Article

    It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.

    1. Ecology
    2. Evolutionary Biology
    Zhixian Zhang, Jianying Li ... Songdou Zhang
    Research Article

    Seasonal polyphenism enables organisms to adapt to environmental challenges by increasing phenotypic diversity. Cacopsylla chinensis exhibits remarkable seasonal polyphenism, specifically in the form of summer-form and winter-form, which have distinct morphological phenotypes. Previous research has shown that low temperature and the temperature receptor CcTRPM regulate the transition from summer-form to winter-form in C. chinensis by impacting cuticle content and thickness. However, the underling neuroendocrine regulatory mechanism remains largely unknown. Bursicon, also known as the tanning hormone, is responsible for the hardening and darkening of the insect cuticle. In this study, we report for the first time on the novel function of Bursicon and its receptor in the transition from summer-form to winter-form in C. chinensis. Firstly, we identified CcBurs-α and CcBurs-β as two typical subunits of Bursicon in C. chinensis, which were regulated by low temperature (10 °C) and CcTRPM. Subsequently, CcBurs-α and CcBurs-β formed a heterodimer that mediated the transition from summer-form to winter-form by influencing the cuticle chitin contents and cuticle thickness. Furthermore, we demonstrated that CcBurs-R acts as the Bursicon receptor and plays a critical role in the up-stream signaling of the chitin biosynthesis pathway, regulating the transition from summer-form to winter-form. Finally, we discovered that miR-6012 directly targets CcBurs-R, contributing to the regulation of Bursicon signaling in the seasonal polyphenism of C. chinensis. In summary, these findings reveal the novel function of the neuroendocrine regulatory mechanism underlying seasonal polyphenism and provide critical insights into the insect Bursicon and its receptor.