Adaptive substitutions underlying cardiac glycoside insensitivity in insects exhibit epistasis in vivo

  1. Andrew M Taverner
  2. Lu Yang
  3. Zachary J Barile
  4. Becky Lin
  5. Julie Peng  Is a corresponding author
  6. Ana P Pinharanda
  7. Arya S Rao
  8. Bartholomew P Roland
  9. Aaron D Talsma
  10. Daniel Wei
  11. Georg Petschenka
  12. Michael J Palladino  Is a corresponding author
  13. Peter Andolfatto  Is a corresponding author
  1. Princeton University, United States
  2. University of Pittsburgh, United States
  3. Columbia University, United States
  4. Justus-Liebig-Universität Gießen, Germany

Abstract

Predicting how species will respond to selection pressures requires understanding the factors that constrain their evolution. We use genome engineering of Drosophila to investigate constraints on the repeated evolution of unrelated herbivorous insects to toxic cardiac glycosides, which primarily occurs via a small subset of possible functionally-relevant substitutions to Na+,K+-ATPase. Surprisingly, we find that frequently observed adaptive substitutions at two sites, 111 and 122, are lethal when homozygous and adult heterozygotes exhibit dominant neural dysfunction. We identify a phylogenetically correlated substitution, A119S, that partially ameliorates the deleterious effects of substitutions at 111 and 122. Despite contributing little to cardiac glycoside-insensitivity in vitro, A119S, like substitutions at 111 and 122, substantially increases adult survivorship upon cardiac glycoside exposure. Our results demonstrate the importance of epistasis in constraining adaptive paths. Moreover, by revealing distinct effects of substitutions in vitro and in vivo, our results underscore the importance of evaluating the fitness of adaptive substitutions and their interactions in whole organisms.

Data availability

Sequence data as been deposited in Genbank and the details of all accession numbers of this and previously published data are tabulated in Supplementary Table S1.

The following data sets were generated

Article and author information

Author details

  1. Andrew M Taverner

    Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8265-6836
  2. Lu Yang

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zachary J Barile

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Becky Lin

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Julie Peng

    Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
    For correspondence
    jzpeng@Princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Ana P Pinharanda

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Arya S Rao

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3007-4812
  8. Bartholomew P Roland

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Aaron D Talsma

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Wei

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Georg Petschenka

    Institute for Insect Biotechnology, Justus-Liebig-Universität Gießen, Hesse, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Michael J Palladino

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsbugh, United States
    For correspondence
    mjp44@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
  13. Peter Andolfatto

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    pa2543@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3393-4574

Funding

National Institutes of Health (R01 GM115523)

  • Peter Andolfatto

National Institutes of Health (T32 GM008424)

  • Bartholomew P Roland

National Institutes of Health (R01 GM108073)

  • Michael J Palladino

National Institutes of Health (R01 AG027453)

  • Michael J Palladino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lauren A O'Connell, Stanford University, United States

Version history

  1. Received: May 6, 2019
  2. Accepted: August 24, 2019
  3. Accepted Manuscript published: August 27, 2019 (version 1)
  4. Accepted Manuscript updated: August 29, 2019 (version 2)
  5. Version of Record published: September 9, 2019 (version 3)
  6. Version of Record updated: September 30, 2019 (version 4)

Copyright

© 2019, Taverner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,860
    Page views
  • 399
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew M Taverner
  2. Lu Yang
  3. Zachary J Barile
  4. Becky Lin
  5. Julie Peng
  6. Ana P Pinharanda
  7. Arya S Rao
  8. Bartholomew P Roland
  9. Aaron D Talsma
  10. Daniel Wei
  11. Georg Petschenka
  12. Michael J Palladino
  13. Peter Andolfatto
(2019)
Adaptive substitutions underlying cardiac glycoside insensitivity in insects exhibit epistasis in vivo
eLife 8:e48224.
https://doi.org/10.7554/eLife.48224

Share this article

https://doi.org/10.7554/eLife.48224

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Jonathan E Phillips, Duojia Pan
    Research Advance

    The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Zachary Paul Billman, Stephen Bela Kovacs ... Edward A Miao
    Research Article

    Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles, and birds gave rise to GSDMA–D in mammals. Uniquely in our tree, amphibian, reptile, and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.