Ultrastructural heterogeneity of layer 4 excitatory synaptic boutons in the adult human temporal lobe neocortex

  1. Rachida Yakoubi
  2. Astrid Rollenhagen
  3. Marec von Lehe
  4. Dorothea Miller
  5. Bernd Walkenfort
  6. Mike Hasenberg
  7. Kurt Sätzler
  8. Joachim HR Lübke  Is a corresponding author
  1. Research Centre Jülich GmbH, Germany
  2. Brandenburg Medical School, Germany
  3. University Hospital/Knappschaftskrankenhaus Bochum, Germany
  4. University Hospital Essen, Germany
  5. University of Ulster, United Kingdom

Abstract

Synapses are fundamental building blocks controlling and modulating the 'behavior' of brain networks. How their structural composition, most notably their quantitative morphology underlie their computational properties remains rather unclear, particularly in humans. Here, excitatory synaptic boutons (SBs) in layer 4 (L4) of the temporal lobe neocortex (TLN) were quantitatively investigated. Biopsies from epilepsy surgery were used for fine-scale and tomographic electron microscopy (EM) to generate 3D-reconstructions of SBs. Particularly, the size of active zones (AZs) and that of the three functionally defined pools of synaptic vesicles (SVs) were quantified. SBs were comparatively small (~2.50 μm2), with a single AZ (~0.13 µm2); preferentially established on spines. SBs had a total pool of ~1800 SVs with strikingly large readily releasable (~ 20), recycling (~ 80) and resting pools (~850). Thus, human L4 SBs may act as 'amplifiers' of signals from the sensory periphery, integrate, synchronize and modulate intra- and extracortical synaptic activity.

Data availability

Original datasets were already uploaded as source files since there is no appropriate domain-specific archive for our data.

Article and author information

Author details

  1. Rachida Yakoubi

    Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Astrid Rollenhagen

    Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marec von Lehe

    Department of Neurosurgery, Brandenburg Medical School, Neuruppin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Dorothea Miller

    Department of Neurosurgery, University Hospital/Knappschaftskrankenhaus Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernd Walkenfort

    Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Mike Hasenberg

    Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kurt Sätzler

    School of Biomedical Sciences, University of Ulster, Londonderry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Joachim HR Lübke

    Institute of Neuroscience and Medicine-INM-10, Research Centre Jülich GmbH, Jülich, Germany
    For correspondence
    j.luebke@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4086-3199

Funding

Deutscher Akademischer Austauschdienst

  • Rachida Yakoubi

Deutscher Akademischer Austauschdienst

  • Joachim HR Lübke

Helmholtz-Gemeinschaft (Research Grant)

  • Joachim HR Lübke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The consent of the patients was obtained and all experimental procedures were approved by the Ethical Committees of the Rheinische Friedrich-Wilhelms-University/University Hospital Bonn (ethic votum of the Medical Faculty to Prof. Dr. med. Johannes Schramm and Prof. Dr. rer. nat. Joachim Lübke, Nr. 146/11), and the University of Bochum (ethic votum of the Medical Faculty to PD Dr. med. Marec von Lehe and Prof. Dr. rer. nat. Joachim Lübke, Reg. No. 5190-14-15; ethic votum of the Medical Faculty to Dr. med. Dorothea Miller and Prof. Dr. rer. nat. Joachim Lübke, Reg. No. 17-6199-BR), and the EU directive (2015/565/EC and 2015/566/EC) concerning working with human tissue.

Copyright

© 2019, Yakoubi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,627
    views
  • 250
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rachida Yakoubi
  2. Astrid Rollenhagen
  3. Marec von Lehe
  4. Dorothea Miller
  5. Bernd Walkenfort
  6. Mike Hasenberg
  7. Kurt Sätzler
  8. Joachim HR Lübke
(2019)
Ultrastructural heterogeneity of layer 4 excitatory synaptic boutons in the adult human temporal lobe neocortex
eLife 8:e48373.
https://doi.org/10.7554/eLife.48373

Share this article

https://doi.org/10.7554/eLife.48373

Further reading

    1. Neuroscience
    Samyogita Hardikar, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks – ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis and explored whether this ‘tri-partite’ view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low-dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes that interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.