Ultrastructural heterogeneity of layer 4 excitatory synaptic boutons in the adult human temporal lobe neocortex

  1. Rachida Yakoubi
  2. Astrid Rollenhagen
  3. Marec von Lehe
  4. Dorothea Miller
  5. Bernd Walkenfort
  6. Mike Hasenberg
  7. Kurt Sätzler
  8. Joachim HR Lübke  Is a corresponding author
  1. Research Centre Jülich GmbH, Germany
  2. Brandenburg Medical School, Germany
  3. University Hospital/Knappschaftskrankenhaus Bochum, Germany
  4. University Hospital Essen, Germany
  5. University of Ulster, United Kingdom

Abstract

Synapses are fundamental building blocks controlling and modulating the 'behavior' of brain networks. How their structural composition, most notably their quantitative morphology underlie their computational properties remains rather unclear, particularly in humans. Here, excitatory synaptic boutons (SBs) in layer 4 (L4) of the temporal lobe neocortex (TLN) were quantitatively investigated. Biopsies from epilepsy surgery were used for fine-scale and tomographic electron microscopy (EM) to generate 3D-reconstructions of SBs. Particularly, the size of active zones (AZs) and that of the three functionally defined pools of synaptic vesicles (SVs) were quantified. SBs were comparatively small (~2.50 μm2), with a single AZ (~0.13 µm2); preferentially established on spines. SBs had a total pool of ~1800 SVs with strikingly large readily releasable (~ 20), recycling (~ 80) and resting pools (~850). Thus, human L4 SBs may act as 'amplifiers' of signals from the sensory periphery, integrate, synchronize and modulate intra- and extracortical synaptic activity.

Data availability

Original datasets were already uploaded as source files since there is no appropriate domain-specific archive for our data.

Article and author information

Author details

  1. Rachida Yakoubi

    Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Astrid Rollenhagen

    Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marec von Lehe

    Department of Neurosurgery, Brandenburg Medical School, Neuruppin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Dorothea Miller

    Department of Neurosurgery, University Hospital/Knappschaftskrankenhaus Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernd Walkenfort

    Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Mike Hasenberg

    Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kurt Sätzler

    School of Biomedical Sciences, University of Ulster, Londonderry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Joachim HR Lübke

    Institute of Neuroscience and Medicine-INM-10, Research Centre Jülich GmbH, Jülich, Germany
    For correspondence
    j.luebke@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4086-3199

Funding

Deutscher Akademischer Austauschdienst

  • Rachida Yakoubi

Deutscher Akademischer Austauschdienst

  • Joachim HR Lübke

Helmholtz-Gemeinschaft (Research Grant)

  • Joachim HR Lübke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The consent of the patients was obtained and all experimental procedures were approved by the Ethical Committees of the Rheinische Friedrich-Wilhelms-University/University Hospital Bonn (ethic votum of the Medical Faculty to Prof. Dr. med. Johannes Schramm and Prof. Dr. rer. nat. Joachim Lübke, Nr. 146/11), and the University of Bochum (ethic votum of the Medical Faculty to PD Dr. med. Marec von Lehe and Prof. Dr. rer. nat. Joachim Lübke, Reg. No. 5190-14-15; ethic votum of the Medical Faculty to Dr. med. Dorothea Miller and Prof. Dr. rer. nat. Joachim Lübke, Reg. No. 17-6199-BR), and the EU directive (2015/565/EC and 2015/566/EC) concerning working with human tissue.

Copyright

© 2019, Yakoubi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,657
    views
  • 254
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.48373

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.