Ultrastructural heterogeneity of layer 4 excitatory synaptic boutons in the adult human temporal lobe neocortex

  1. Rachida Yakoubi
  2. Astrid Rollenhagen
  3. Marec von Lehe
  4. Dorothea Miller
  5. Bernd Walkenfort
  6. Mike Hasenberg
  7. Kurt Sätzler
  8. Joachim HR Lübke  Is a corresponding author
  1. Research Centre Jülich GmbH, Germany
  2. Brandenburg Medical School, Germany
  3. University Hospital/Knappschaftskrankenhaus Bochum, Germany
  4. University Hospital Essen, Germany
  5. University of Ulster, United Kingdom

Abstract

Synapses are fundamental building blocks controlling and modulating the 'behavior' of brain networks. How their structural composition, most notably their quantitative morphology underlie their computational properties remains rather unclear, particularly in humans. Here, excitatory synaptic boutons (SBs) in layer 4 (L4) of the temporal lobe neocortex (TLN) were quantitatively investigated. Biopsies from epilepsy surgery were used for fine-scale and tomographic electron microscopy (EM) to generate 3D-reconstructions of SBs. Particularly, the size of active zones (AZs) and that of the three functionally defined pools of synaptic vesicles (SVs) were quantified. SBs were comparatively small (~2.50 μm2), with a single AZ (~0.13 µm2); preferentially established on spines. SBs had a total pool of ~1800 SVs with strikingly large readily releasable (~ 20), recycling (~ 80) and resting pools (~850). Thus, human L4 SBs may act as 'amplifiers' of signals from the sensory periphery, integrate, synchronize and modulate intra- and extracortical synaptic activity.

Data availability

Original datasets were already uploaded as source files since there is no appropriate domain-specific archive for our data.

Article and author information

Author details

  1. Rachida Yakoubi

    Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Astrid Rollenhagen

    Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marec von Lehe

    Department of Neurosurgery, Brandenburg Medical School, Neuruppin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Dorothea Miller

    Department of Neurosurgery, University Hospital/Knappschaftskrankenhaus Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernd Walkenfort

    Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Mike Hasenberg

    Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kurt Sätzler

    School of Biomedical Sciences, University of Ulster, Londonderry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Joachim HR Lübke

    Institute of Neuroscience and Medicine-INM-10, Research Centre Jülich GmbH, Jülich, Germany
    For correspondence
    j.luebke@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4086-3199

Funding

Deutscher Akademischer Austauschdienst

  • Rachida Yakoubi

Deutscher Akademischer Austauschdienst

  • Joachim HR Lübke

Helmholtz-Gemeinschaft (Research Grant)

  • Joachim HR Lübke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Moritz Helmstaedter, Max Planck Institute for Brain Research, Germany

Ethics

Human subjects: The consent of the patients was obtained and all experimental procedures were approved by the Ethical Committees of the Rheinische Friedrich-Wilhelms-University/University Hospital Bonn (ethic votum of the Medical Faculty to Prof. Dr. med. Johannes Schramm and Prof. Dr. rer. nat. Joachim Lübke, Nr. 146/11), and the University of Bochum (ethic votum of the Medical Faculty to PD Dr. med. Marec von Lehe and Prof. Dr. rer. nat. Joachim Lübke, Reg. No. 5190-14-15; ethic votum of the Medical Faculty to Dr. med. Dorothea Miller and Prof. Dr. rer. nat. Joachim Lübke, Reg. No. 17-6199-BR), and the EU directive (2015/565/EC and 2015/566/EC) concerning working with human tissue.

Version history

  1. Received: May 10, 2019
  2. Accepted: November 19, 2019
  3. Accepted Manuscript published: November 20, 2019 (version 1)
  4. Version of Record published: December 18, 2019 (version 2)

Copyright

© 2019, Yakoubi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,591
    views
  • 236
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rachida Yakoubi
  2. Astrid Rollenhagen
  3. Marec von Lehe
  4. Dorothea Miller
  5. Bernd Walkenfort
  6. Mike Hasenberg
  7. Kurt Sätzler
  8. Joachim HR Lübke
(2019)
Ultrastructural heterogeneity of layer 4 excitatory synaptic boutons in the adult human temporal lobe neocortex
eLife 8:e48373.
https://doi.org/10.7554/eLife.48373

Share this article

https://doi.org/10.7554/eLife.48373

Further reading

    1. Neuroscience
    Jack W Lindsey, Elias B Issa
    Research Article

    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity (‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.

    1. Neuroscience
    Zhaoran Zhang, Huijun Wang ... Kunlin Wei
    Research Article

    The sensorimotor system can recalibrate itself without our conscious awareness, a type of procedural learning whose computational mechanism remains undefined. Recent findings on implicit motor adaptation, such as over-learning from small perturbations and fast saturation for increasing perturbation size, challenge existing theories based on sensory errors. We argue that perceptual error, arising from the optimal combination of movement-related cues, is the primary driver of implicit adaptation. Central to our theory is the increasing sensory uncertainty of visual cues with increasing perturbations, which was validated through perceptual psychophysics (Experiment 1). Our theory predicts the learning dynamics of implicit adaptation across a spectrum of perturbation sizes on a trial-by-trial basis (Experiment 2). It explains proprioception changes and their relation to visual perturbation (Experiment 3). By modulating visual uncertainty in perturbation, we induced unique adaptation responses in line with our model predictions (Experiment 4). Overall, our perceptual error framework outperforms existing models based on sensory errors, suggesting that perceptual error in locating one’s effector, supported by Bayesian cue integration, underpins the sensorimotor system’s implicit adaptation.