1. Neuroscience
Download icon

Ultrastructural heterogeneity of layer 4 excitatory synaptic boutons in the adult human temporal lobe neocortex

  1. Rachida Yakoubi
  2. Astrid Rollenhagen
  3. Marec von Lehe
  4. Dorothea Miller
  5. Bernd Walkenfort
  6. Mike Hasenberg
  7. Kurt Sätzler
  8. Joachim HR Lübke  Is a corresponding author
  1. Research Centre Jülich GmbH, Germany
  2. Brandenburg Medical School, Germany
  3. University Hospital/Knappschaftskrankenhaus Bochum, Germany
  4. University Hospital Essen, Germany
  5. University of Ulster, United Kingdom
Research Article
  • Cited 7
  • Views 1,122
  • Annotations
Cite this article as: eLife 2019;8:e48373 doi: 10.7554/eLife.48373

Abstract

Synapses are fundamental building blocks controlling and modulating the 'behavior' of brain networks. How their structural composition, most notably their quantitative morphology underlie their computational properties remains rather unclear, particularly in humans. Here, excitatory synaptic boutons (SBs) in layer 4 (L4) of the temporal lobe neocortex (TLN) were quantitatively investigated. Biopsies from epilepsy surgery were used for fine-scale and tomographic electron microscopy (EM) to generate 3D-reconstructions of SBs. Particularly, the size of active zones (AZs) and that of the three functionally defined pools of synaptic vesicles (SVs) were quantified. SBs were comparatively small (~2.50 μm2), with a single AZ (~0.13 µm2); preferentially established on spines. SBs had a total pool of ~1800 SVs with strikingly large readily releasable (~ 20), recycling (~ 80) and resting pools (~850). Thus, human L4 SBs may act as 'amplifiers' of signals from the sensory periphery, integrate, synchronize and modulate intra- and extracortical synaptic activity.

Data availability

Original datasets were already uploaded as source files since there is no appropriate domain-specific archive for our data.

Article and author information

Author details

  1. Rachida Yakoubi

    Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Astrid Rollenhagen

    Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marec von Lehe

    Department of Neurosurgery, Brandenburg Medical School, Neuruppin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Dorothea Miller

    Department of Neurosurgery, University Hospital/Knappschaftskrankenhaus Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernd Walkenfort

    Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Mike Hasenberg

    Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kurt Sätzler

    School of Biomedical Sciences, University of Ulster, Londonderry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Joachim HR Lübke

    Institute of Neuroscience and Medicine-INM-10, Research Centre Jülich GmbH, Jülich, Germany
    For correspondence
    j.luebke@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4086-3199

Funding

Deutscher Akademischer Austauschdienst

  • Rachida Yakoubi

Deutscher Akademischer Austauschdienst

  • Joachim HR Lübke

Helmholtz-Gemeinschaft (Research Grant)

  • Joachim HR Lübke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The consent of the patients was obtained and all experimental procedures were approved by the Ethical Committees of the Rheinische Friedrich-Wilhelms-University/University Hospital Bonn (ethic votum of the Medical Faculty to Prof. Dr. med. Johannes Schramm and Prof. Dr. rer. nat. Joachim Lübke, Nr. 146/11), and the University of Bochum (ethic votum of the Medical Faculty to PD Dr. med. Marec von Lehe and Prof. Dr. rer. nat. Joachim Lübke, Reg. No. 5190-14-15; ethic votum of the Medical Faculty to Dr. med. Dorothea Miller and Prof. Dr. rer. nat. Joachim Lübke, Reg. No. 17-6199-BR), and the EU directive (2015/565/EC and 2015/566/EC) concerning working with human tissue.

Reviewing Editor

  1. Moritz Helmstaedter, Max Planck Institute for Brain Research, Germany

Publication history

  1. Received: May 10, 2019
  2. Accepted: November 19, 2019
  3. Accepted Manuscript published: November 20, 2019 (version 1)
  4. Version of Record published: December 18, 2019 (version 2)

Copyright

© 2019, Yakoubi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,122
    Page views
  • 189
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Stephen Johnston et al.
    Research Article Updated

    Recombinant adeno-associated virus (rAAV) has been widely used as a viral vector across mammalian biology and has been shown to be safe and effective in human gene therapy. We demonstrate that neural progenitor cells (NPCs) and immature dentate granule cells (DGCs) within the adult murine hippocampus are particularly sensitive to rAAV-induced cell death. Cell loss is dose dependent and nearly complete at experimentally relevant viral titers. rAAV-induced cell death is rapid and persistent, with loss of BrdU-labeled cells within 18 hr post-injection and no evidence of recovery of adult neurogenesis at 3 months post-injection. The remaining mature DGCs appear hyperactive 4 weeks post-injection based on immediate early gene expression, consistent with previous studies investigating the effects of attenuating adult neurogenesis. In vitro application of AAV or electroporation of AAV2 inverted terminal repeats (ITRs) is sufficient to induce cell death. Efficient transduction of the dentategyrus (DG)– without ablating adult neurogenesis– can be achieved by injection of rAAV2-retro serotyped virus into CA3. rAAV2-retro results in efficient retrograde labeling of mature DGCs and permits in vivo two-photon calcium imaging of dentate activity while leaving adult neurogenesis intact. These findings expand on recent reports implicating rAAV-linked toxicity in stem cells and other cell types and suggest that future work using rAAV as an experimental tool in the DG and as a gene therapy for diseases of the central nervous system should be carefully evaluated.

    1. Neuroscience
    Steven R Sando et al.
    Research Article Updated

    Neural control of muscle function is fundamental to animal behavior. Many muscles can generate multiple distinct behaviors. Nonetheless, individual muscle cells are generally regarded as the smallest units of motor control. We report that muscle cells can alter behavior by contracting subcellularly. We previously discovered that noxious tastes reverse the net flow of particles through the C. elegans pharynx, a neuromuscular pump, resulting in spitting. We now show that spitting results from the subcellular contraction of the anterior region of the pm3 muscle cell. Subcellularly localized calcium increases accompany this contraction. Spitting is controlled by an ‘hourglass’ circuit motif: parallel neural pathways converge onto a single motor neuron that differentially controls multiple muscles and the critical subcellular muscle compartment. We conclude that subcellular muscle units enable modulatory motor control and propose that subcellular muscle contraction is a fundamental mechanism by which neurons can reshape behavior.