Variable prediction accuracy of polygenic scores within an ancestry group

  1. Hakhamanesh Mostafavi  Is a corresponding author
  2. Arbel Harpak  Is a corresponding author
  3. Ipsita Agarwal
  4. Dalton Conley
  5. Jonathan K Pritchard
  6. Molly Przeworski  Is a corresponding author
  1. Columbia University, United States
  2. Princeton University, United States
  3. Stanford University, United States

Abstract

Fields as diverse as human genetics and sociology are increasingly using polygenic scores based on genome-wide association studies (GWAS) for phenotypic prediction. However, recent work has shown that polygenic scores have limited portability across groups of different genetic ancestries, restricting the contexts in which they can be used reliably and potentially creating serious inequities in future clinical applications. Using the UK Biobank data, we demonstrate that even within a single ancestry group (i.e., when there are negligible differences in linkage disequilibrium or in causal alleles frequencies), the prediction accuracy of polygenic scores can depend on characteristics such as the socio-economic status, age or sex of the individuals in which the GWAS and the prediction were conducted, as well as on the GWAS design. Our findings highlight both the complexities of interpreting polygenic scores and underappreciated obstacles to their broad use.

Data availability

The GWAS summary statistics generated in this study have been uploaded to Dryad.

The following data sets were generated

Article and author information

Author details

  1. Hakhamanesh Mostafavi

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    hsm2137@columbia.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1060-2844
  2. Arbel Harpak

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    ah3586@columbia.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3655-748X
  3. Ipsita Agarwal

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  4. Dalton Conley

    Department of Sociology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  5. Jonathan K Pritchard

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8828-5236
  6. Molly Przeworski

    Department of Systems Biology, Columbia University, New York, United States
    For correspondence
    mp3284@columbia.edu
    Competing interests
    Molly Przeworski, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5369-9009

Funding

National Institute of General Medical Sciences (GM121372)

  • Molly Przeworski

National Human Genome Research Institute (HG008140)

  • Jonathan K Pritchard

Robert Wood Johnson Foundation (84337817)

  • Dalton Conley

Simons Foundation (633313)

  • Arbel Harpak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ruth Loos, The Icahn School of Medicine at Mount Sinai, United States

Ethics

Human subjects: This study has been conducted using the UK Biobank resource under application Number 11138, as approved by Columbia University Institutional Review Board, protocol AAAS2914.

Version history

  1. Received: May 10, 2019
  2. Accepted: January 28, 2020
  3. Accepted Manuscript published: January 30, 2020 (version 1)
  4. Version of Record published: March 12, 2020 (version 2)

Copyright

© 2020, Mostafavi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,161
    views
  • 1,581
    downloads
  • 267
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hakhamanesh Mostafavi
  2. Arbel Harpak
  3. Ipsita Agarwal
  4. Dalton Conley
  5. Jonathan K Pritchard
  6. Molly Przeworski
(2020)
Variable prediction accuracy of polygenic scores within an ancestry group
eLife 9:e48376.
https://doi.org/10.7554/eLife.48376

Share this article

https://doi.org/10.7554/eLife.48376

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Yifei Weng, Shiyi Zhou ... Coleen T Murphy
    Research Article

    Cognitive decline is a significant health concern in our aging society. Here, we used the model organism C. elegans to investigate the impact of the IIS/FOXO pathway on age-related cognitive decline. The daf-2 Insulin/IGF-1 receptor mutant exhibits a significant extension of learning and memory span with age compared to wild-type worms, an effect that is dependent on the DAF-16 transcription factor. To identify possible mechanisms by which aging daf-2 mutants maintain learning and memory with age while wild-type worms lose neuronal function, we carried out neuron-specific transcriptomic analysis in aged animals. We observed downregulation of neuronal genes and upregulation of transcriptional regulation genes in aging wild-type neurons. By contrast, IIS/FOXO pathway mutants exhibit distinct neuronal transcriptomic alterations in response to cognitive aging, including upregulation of stress response genes and downregulation of specific insulin signaling genes. We tested the roles of significantly transcriptionally-changed genes in regulating cognitive functions, identifying novel regulators of learning and memory. In addition to other mechanistic insights, a comparison of the aged vs young daf-2 neuronal transcriptome revealed that a new set of potentially neuroprotective genes is upregulated; instead of simply mimicking a young state, daf-2 may enhance neuronal resilience to accumulation of harm and take a more active approach to combat aging. These findings suggest a potential mechanism for regulating cognitive function with age and offer insights into novel therapeutic targets for age-related cognitive decline.

    1. Genetics and Genomics
    Samuel Pattillo Smith, Gregory Darnell ... Lorin Crawford
    Research Article

    LD score regression (LDSC) is a method to estimate narrow-sense heritability from genome-wide association study (GWAS) summary statistics alone, making it a fast and popular approach. In this work, we present interaction-LD score (i-LDSC) regression: an extension of the original LDSC framework that accounts for interactions between genetic variants. By studying a wide range of generative models in simulations, and by re-analyzing 25 well-studied quantitative phenotypes from 349,468 individuals in the UK Biobank and up to 159,095 individuals in BioBank Japan, we show that the inclusion of a cis-interaction score (i.e. interactions between a focal variant and proximal variants) recovers genetic variance that is not captured by LDSC. For each of the 25 traits analyzed in the UK Biobank and BioBank Japan, i-LDSC detects additional variation contributed by genetic interactions. The i-LDSC software and its application to these biobanks represent a step towards resolving further genetic contributions of sources of non-additive genetic effects to complex trait variation.