Variable prediction accuracy of polygenic scores within an ancestry group

  1. Hakhamanesh Mostafavi  Is a corresponding author
  2. Arbel Harpak  Is a corresponding author
  3. Ipsita Agarwal
  4. Dalton Conley
  5. Jonathan K Pritchard
  6. Molly Przeworski  Is a corresponding author
  1. Columbia University, United States
  2. Princeton University, United States
  3. Stanford University, United States

Abstract

Fields as diverse as human genetics and sociology are increasingly using polygenic scores based on genome-wide association studies (GWAS) for phenotypic prediction. However, recent work has shown that polygenic scores have limited portability across groups of different genetic ancestries, restricting the contexts in which they can be used reliably and potentially creating serious inequities in future clinical applications. Using the UK Biobank data, we demonstrate that even within a single ancestry group (i.e., when there are negligible differences in linkage disequilibrium or in causal alleles frequencies), the prediction accuracy of polygenic scores can depend on characteristics such as the socio-economic status, age or sex of the individuals in which the GWAS and the prediction were conducted, as well as on the GWAS design. Our findings highlight both the complexities of interpreting polygenic scores and underappreciated obstacles to their broad use.

Data availability

The GWAS summary statistics generated in this study have been uploaded to Dryad.

The following data sets were generated

Article and author information

Author details

  1. Hakhamanesh Mostafavi

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    hsm2137@columbia.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1060-2844
  2. Arbel Harpak

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    ah3586@columbia.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3655-748X
  3. Ipsita Agarwal

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  4. Dalton Conley

    Department of Sociology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  5. Jonathan K Pritchard

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8828-5236
  6. Molly Przeworski

    Department of Systems Biology, Columbia University, New York, United States
    For correspondence
    mp3284@columbia.edu
    Competing interests
    Molly Przeworski, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5369-9009

Funding

National Institute of General Medical Sciences (GM121372)

  • Molly Przeworski

National Human Genome Research Institute (HG008140)

  • Jonathan K Pritchard

Robert Wood Johnson Foundation (84337817)

  • Dalton Conley

Simons Foundation (633313)

  • Arbel Harpak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ruth Loos, The Icahn School of Medicine at Mount Sinai, United States

Ethics

Human subjects: This study has been conducted using the UK Biobank resource under application Number 11138, as approved by Columbia University Institutional Review Board, protocol AAAS2914.

Version history

  1. Received: May 10, 2019
  2. Accepted: January 28, 2020
  3. Accepted Manuscript published: January 30, 2020 (version 1)
  4. Version of Record published: March 12, 2020 (version 2)

Copyright

© 2020, Mostafavi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,876
    views
  • 1,558
    downloads
  • 251
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hakhamanesh Mostafavi
  2. Arbel Harpak
  3. Ipsita Agarwal
  4. Dalton Conley
  5. Jonathan K Pritchard
  6. Molly Przeworski
(2020)
Variable prediction accuracy of polygenic scores within an ancestry group
eLife 9:e48376.
https://doi.org/10.7554/eLife.48376

Share this article

https://doi.org/10.7554/eLife.48376

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Ting Zhang, Alisa Ambrodji ... Steven M Offer
    Research Article

    Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Lauren Kuffler, Daniel A Skelly ... Gregory W Carter
    Research Article

    Gene expression is known to be affected by interactions between local genetic variation and DNA accessibility, with the latter organized into three-dimensional chromatin structures. Analyses of these interactions have previously been limited, obscuring their regulatory context, and the extent to which they occur throughout the genome. Here, we undertake a genome-scale analysis of these interactions in a genetically diverse population to systematically identify global genetic–epigenetic interaction, and reveal constraints imposed by chromatin structure. We establish the extent and structure of genotype-by-epigenotype interaction using embryonic stem cells derived from Diversity Outbred mice. This mouse population segregates millions of variants from eight inbred founders, enabling precision genetic mapping with extensive genotypic and phenotypic diversity. With 176 samples profiled for genotype, gene expression, and open chromatin, we used regression modeling to infer genetic–epigenetic interactions on a genome-wide scale. Our results demonstrate that statistical interactions between genetic variants and chromatin accessibility are common throughout the genome. We found that these interactions occur within the local area of the affected gene, and that this locality corresponds to topologically associated domains (TADs). The likelihood of interaction was most strongly defined by the three-dimensional (3D) domain structure rather than linear DNA sequence. We show that stable 3D genome structure is an effective tool to guide searches for regulatory elements and, conversely, that regulatory elements in genetically diverse populations provide a means to infer 3D genome structure. We confirmed this finding with CTCF ChIP-seq that revealed strain-specific binding in the inbred founder mice. In stem cells, open chromatin participating in the most significant regression models demonstrated an enrichment for developmental genes and the TAD-forming CTCF-binding complex, providing an opportunity for statistical inference of shifting TAD boundaries operating during early development. These findings provide evidence that genetic and epigenetic factors operate within the context of 3D chromatin structure.