Rats exhibit similar biases in foraging and intertemporal choice tasks

  1. Gary A Kane  Is a corresponding author
  2. Aaron M Bornstein
  3. Amitai Shenhav
  4. Robert C Wilson
  5. Nathaniel D Daw
  6. Jonathan D Cohen
  1. Princeton University, United States
  2. Brown University, United States
  3. University of Arizona, United States

Abstract

Animals, including humans, consistently exhibit myopia in two different contexts: foraging, in which they harvest locally beyond what is predicted by optimal foraging theory, and intertemporal choice, in which they exhibit a preference for immediate vs. delayed rewards beyond what is predicted by rational (exponential) discounting. Despite the similarity in behavior between these two contexts, previous efforts to reconcile these observations in terms of a consistent pattern of time preferences have failed. Here, via extensive behavioral testing and quantitative modeling, we show that rats exhibit similar time preferences in both contexts: they prefer immediate vs. delayed rewards and they are sensitive to opportunity costs of delays to future decisions. Further, a quasi-hyperbolic discounting model, a form of hyperbolic discounting with separate components for short- and long-term rewards, explains individual rats' time preferences across both contexts, providing evidence for a common mechanism for myopic behavior in foraging and intertemporal choice.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Gary A Kane

    Department of Psychology, Princeton University, Princeton, United States
    For correspondence
    gkane@rowland.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7703-5055
  2. Aaron M Bornstein

    Department of Psychology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6251-6000
  3. Amitai Shenhav

    Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert C Wilson

    Department of Psychology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2963-2971
  5. Nathaniel D Daw

    Department of Psychology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5029-1430
  6. Jonathan D Cohen

    Department of Psychology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (F31MH109286)

  • Gary A Kane
  • Jonathan D Cohen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geoffrey Schoenbaum, National Institute on Drug Abuse, National Institutes of Health, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were approved by the Princeton University (Protocol 1969) and Rutgers University (Protocol 14-075) Institutional Animal Care and Use Committees.

Version history

  1. Received: May 14, 2019
  2. Accepted: September 17, 2019
  3. Accepted Manuscript published: September 18, 2019 (version 1)
  4. Version of Record published: October 15, 2019 (version 2)

Copyright

© 2019, Kane et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,511
    views
  • 342
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gary A Kane
  2. Aaron M Bornstein
  3. Amitai Shenhav
  4. Robert C Wilson
  5. Nathaniel D Daw
  6. Jonathan D Cohen
(2019)
Rats exhibit similar biases in foraging and intertemporal choice tasks
eLife 8:e48429.
https://doi.org/10.7554/eLife.48429

Share this article

https://doi.org/10.7554/eLife.48429

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Richard Sejour, Janet Leatherwood ... Bruce Futcher
    Research Article

    Previously, Tuller et al. found that the first 30–50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5’ slow translation ‘ramp.’ We confirm that 5’ regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5’ translation. However, we also find that the 5’ (and 3’) ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5’ end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5’ ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5’ end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5’ ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5’ translation is a ‘spandrel’--a non-adaptive consequence of something else, in this case, the turnover of 5’ ends in evolution, and it does not improve translation.

    1. Computational and Systems Biology
    Hedi Chen, Xiaoyu Fan ... Boxue Tian
    Research Article

    Accurate prediction of the structurally diverse complementarity determining region heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal antibodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein language model and provides a 2.24 Å average RMSD between predicted and experimentally determined CDR-H3 loops, thus outperforming other current computational methods in our non-redundant high-quality dataset. The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT through analyzing antibody surface properties and antibody–antigen interactions. This structural prediction tool can be used to optimize antibody–antigen binding and engineer therapeutic antibodies with biophysical properties for specialized drug administration route.