Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma

  1. Benjamin R Thomson
  2. Isabel A Carota
  3. Tomokazu Souma
  4. Saily Soman
  5. Dietmar Vestweber
  6. Susan E Quaggin  Is a corresponding author
  1. Northwestern University, United States
  2. Max Planck Institute for Molecular Biomedicine, Germany

Abstract

Elevated intraocular pressure (IOP) due to insufficient aqueous humor outflow through the trabecular meshwork and Schlemm's canal (SC) is the most important risk factor for glaucoma, a leading cause of blindness worldwide. We previously reported loss of function mutations in the receptor tyrosine kinase TEK or its ligand ANGPT1 cause primary congenital glaucoma in humans and mice due to failure of SC development. Here, we describe a novel approach to enhance canal formation in these animals by deleting a single allele of the gene encoding the phosphatase PTPRB during development. Compared to Tek haploinsufficient mice, which exhibit elevated IOP and loss of retinal ganglion cells, Tek+/-;Ptprb+/- mice have elevated TEK phosphorylation, which allows normal SC development and prevents ocular hypertension and RGC loss. These studies provide evidence that PTPRB is an important regulator of TEK signaling in the aqueous humor outflow pathway and identify a new therapeutic target for treatment of glaucoma.

Data availability

All data described have been included in the manuscript. No data sets were generated during the course of this study.

Article and author information

Author details

  1. Benjamin R Thomson

    Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6565-5866
  2. Isabel A Carota

    Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    Isabel A Carota, was employed by Eli Lilly and Company during the time of study completion and manuscript preparation.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7980-2377
  3. Tomokazu Souma

    Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3285-8613
  4. Saily Soman

    Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  5. Dietmar Vestweber

    Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
    Competing interests
    Dietmar Vestweber, is a scientific advisory board member of Aerpio Pharmaceuticals.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3517-732X
  6. Susan E Quaggin

    Feinberg School of Medicine, Northwestern University, Chicago, United States
    For correspondence
    quaggin@northwestern.edu
    Competing interests
    Susan E Quaggin, has applied for patents related to therapeutic targeting of the ANGPT-TEK pathway in ocular hypertension and glaucoma and receives research support, owns stock in and is a director of Mannin Research.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3706-5727

Funding

National Institutes of Health (R01 HL124120)

  • Susan E Quaggin

National Institutes of Health (R01 EY025799)

  • Susan E Quaggin

National Institutes of Health (P30 DK114857)

  • Susan E Quaggin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lois Smith, Boston Children's Hospital/Harvard Medical School, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and the ARVO guidelines for care and use of vertebrate research subjects in eye research. All animal experiments were approved by the Animal Care Committee at the Center for Comparative Medicine of Northwestern University (Evanston, Illinois, USA) under animal protocols IS00002777, IS00006571 and IS00003091.

Version history

  1. Received: May 15, 2019
  2. Accepted: October 11, 2019
  3. Accepted Manuscript published: October 17, 2019 (version 1)
  4. Version of Record published: November 22, 2019 (version 2)

Copyright

© 2019, Thomson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,715
    views
  • 278
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin R Thomson
  2. Isabel A Carota
  3. Tomokazu Souma
  4. Saily Soman
  5. Dietmar Vestweber
  6. Susan E Quaggin
(2019)
Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma
eLife 8:e48474.
https://doi.org/10.7554/eLife.48474

Share this article

https://doi.org/10.7554/eLife.48474

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Tobias Weinberger, Messerer Denise ... Christian Schulz
    Research Article

    Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.

    1. Cell Biology
    2. Developmental Biology
    Corey D Holman, Alexander P Sakers ... Patrick Seale
    Research Article

    The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.