The role of premature evidence accumulation in making difficult perceptual decisions under temporal uncertainty

  1. Ciara A Devine  Is a corresponding author
  2. Christine Gaffney
  3. Gerard M Loughnane
  4. Simon P Kelly
  5. Redmond G O'Connell  Is a corresponding author
  1. Trinity College Dublin, The University of Dublin, Ireland
  2. University College Dublin, Ireland

Abstract

The computations and neural processes underpinning decision making have primarily been investigated using highly simplified tasks in which stimulus onsets cue observers to start accumulating choice-relevant information. Yet, in daily life we are rarely afforded the luxury of knowing precisely when choice-relevant information will appear. Here, we examined neural indices of decision formation while subjects discriminated subtle stimulus feature changes whose timing relative to stimulus onset ('foreperiod') was uncertain. Joint analysis of behavioural error patterns and neural decision signal dynamics indicated that subjects systematically began the accumulation process before any informative evidence was presented, and further, that accumulation onset timing varied systematically as a function of the foreperiod of the preceding trial. These results suggest that the brain can adjust to temporal uncertainty by strategically modulating accumulation onset timing according to statistical regularities in the temporal structure of the sensory environment with particular emphasis on recent experience.

Data availability

Data is available on dryad at https://doi.org/10.5061/dryad.b2rbnzs8r and Github https://github.com/CiaraDevine/Temporal_Uncertainty_DevineCA_2019

The following data sets were generated

Article and author information

Author details

  1. Ciara A Devine

    Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin, Ireland
    For correspondence
    devineca@tcd.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7522-1172
  2. Christine Gaffney

    Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  3. Gerard M Loughnane

    Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1961-5294
  4. Simon P Kelly

    School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9983-3595
  5. Redmond G O'Connell

    Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin, Ireland
    For correspondence
    reoconne@tcd.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6949-2793

Funding

Irish Research Council (Postgraduate Fellowship)

  • Ciara A Devine
  • Redmond G O'Connell

H2020 European Research Council (Starting Grant 63829)

  • Redmond G O'Connell

National Science Foundation (BCS-1358955)

  • Simon P Kelly
  • Redmond G O'Connell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Written, informed consent was obtained from all subjects prior to taking part in this study and all procedures were approved by the Trinity College Dublin ethics committee (SPREC112014-01) and conducted in accordance with the Declaration of Helsinki.

Copyright

© 2019, Devine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,093
    views
  • 287
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ciara A Devine
  2. Christine Gaffney
  3. Gerard M Loughnane
  4. Simon P Kelly
  5. Redmond G O'Connell
(2019)
The role of premature evidence accumulation in making difficult perceptual decisions under temporal uncertainty
eLife 8:e48526.
https://doi.org/10.7554/eLife.48526

Share this article

https://doi.org/10.7554/eLife.48526

Further reading

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.