The role of premature evidence accumulation in making difficult perceptual decisions under temporal uncertainty

  1. Ciara A Devine  Is a corresponding author
  2. Christine Gaffney
  3. Gerard M Loughnane
  4. Simon P Kelly
  5. Redmond G O'Connell  Is a corresponding author
  1. Trinity College Dublin, The University of Dublin, Ireland
  2. University College Dublin, Ireland

Abstract

The computations and neural processes underpinning decision making have primarily been investigated using highly simplified tasks in which stimulus onsets cue observers to start accumulating choice-relevant information. Yet, in daily life we are rarely afforded the luxury of knowing precisely when choice-relevant information will appear. Here, we examined neural indices of decision formation while subjects discriminated subtle stimulus feature changes whose timing relative to stimulus onset ('foreperiod') was uncertain. Joint analysis of behavioural error patterns and neural decision signal dynamics indicated that subjects systematically began the accumulation process before any informative evidence was presented, and further, that accumulation onset timing varied systematically as a function of the foreperiod of the preceding trial. These results suggest that the brain can adjust to temporal uncertainty by strategically modulating accumulation onset timing according to statistical regularities in the temporal structure of the sensory environment with particular emphasis on recent experience.

Data availability

Data is available on dryad at https://doi.org/10.5061/dryad.b2rbnzs8r and Github https://github.com/CiaraDevine/Temporal_Uncertainty_DevineCA_2019

The following data sets were generated

Article and author information

Author details

  1. Ciara A Devine

    Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin, Ireland
    For correspondence
    devineca@tcd.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7522-1172
  2. Christine Gaffney

    Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  3. Gerard M Loughnane

    Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1961-5294
  4. Simon P Kelly

    School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9983-3595
  5. Redmond G O'Connell

    Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin, Ireland
    For correspondence
    reoconne@tcd.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6949-2793

Funding

Irish Research Council (Postgraduate Fellowship)

  • Ciara A Devine
  • Redmond G O'Connell

H2020 European Research Council (Starting Grant 63829)

  • Redmond G O'Connell

National Science Foundation (BCS-1358955)

  • Simon P Kelly
  • Redmond G O'Connell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marios Philiastides, University of Glasgow, United Kingdom

Ethics

Human subjects: Written, informed consent was obtained from all subjects prior to taking part in this study and all procedures were approved by the Trinity College Dublin ethics committee (SPREC112014-01) and conducted in accordance with the Declaration of Helsinki.

Version history

  1. Received: May 16, 2019
  2. Accepted: November 26, 2019
  3. Accepted Manuscript published: November 27, 2019 (version 1)
  4. Version of Record published: December 10, 2019 (version 2)

Copyright

© 2019, Devine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,909
    views
  • 268
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ciara A Devine
  2. Christine Gaffney
  3. Gerard M Loughnane
  4. Simon P Kelly
  5. Redmond G O'Connell
(2019)
The role of premature evidence accumulation in making difficult perceptual decisions under temporal uncertainty
eLife 8:e48526.
https://doi.org/10.7554/eLife.48526

Share this article

https://doi.org/10.7554/eLife.48526

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.