The role of premature evidence accumulation in making difficult perceptual decisions under temporal uncertainty

  1. Ciara A Devine  Is a corresponding author
  2. Christine Gaffney
  3. Gerard M Loughnane
  4. Simon P Kelly
  5. Redmond G O'Connell  Is a corresponding author
  1. Trinity College Dublin, The University of Dublin, Ireland
  2. University College Dublin, Ireland

Abstract

The computations and neural processes underpinning decision making have primarily been investigated using highly simplified tasks in which stimulus onsets cue observers to start accumulating choice-relevant information. Yet, in daily life we are rarely afforded the luxury of knowing precisely when choice-relevant information will appear. Here, we examined neural indices of decision formation while subjects discriminated subtle stimulus feature changes whose timing relative to stimulus onset ('foreperiod') was uncertain. Joint analysis of behavioural error patterns and neural decision signal dynamics indicated that subjects systematically began the accumulation process before any informative evidence was presented, and further, that accumulation onset timing varied systematically as a function of the foreperiod of the preceding trial. These results suggest that the brain can adjust to temporal uncertainty by strategically modulating accumulation onset timing according to statistical regularities in the temporal structure of the sensory environment with particular emphasis on recent experience.

Data availability

Data is available on dryad at https://doi.org/10.5061/dryad.b2rbnzs8r and Github https://github.com/CiaraDevine/Temporal_Uncertainty_DevineCA_2019

The following data sets were generated

Article and author information

Author details

  1. Ciara A Devine

    Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin, Ireland
    For correspondence
    devineca@tcd.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7522-1172
  2. Christine Gaffney

    Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  3. Gerard M Loughnane

    Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1961-5294
  4. Simon P Kelly

    School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9983-3595
  5. Redmond G O'Connell

    Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin, Ireland
    For correspondence
    reoconne@tcd.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6949-2793

Funding

Irish Research Council (Postgraduate Fellowship)

  • Ciara A Devine
  • Redmond G O'Connell

H2020 European Research Council (Starting Grant 63829)

  • Redmond G O'Connell

National Science Foundation (BCS-1358955)

  • Simon P Kelly
  • Redmond G O'Connell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marios Philiastides, University of Glasgow, United Kingdom

Ethics

Human subjects: Written, informed consent was obtained from all subjects prior to taking part in this study and all procedures were approved by the Trinity College Dublin ethics committee (SPREC112014-01) and conducted in accordance with the Declaration of Helsinki.

Version history

  1. Received: May 16, 2019
  2. Accepted: November 26, 2019
  3. Accepted Manuscript published: November 27, 2019 (version 1)
  4. Version of Record published: December 10, 2019 (version 2)

Copyright

© 2019, Devine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,940
    views
  • 275
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ciara A Devine
  2. Christine Gaffney
  3. Gerard M Loughnane
  4. Simon P Kelly
  5. Redmond G O'Connell
(2019)
The role of premature evidence accumulation in making difficult perceptual decisions under temporal uncertainty
eLife 8:e48526.
https://doi.org/10.7554/eLife.48526

Share this article

https://doi.org/10.7554/eLife.48526

Further reading

    1. Neuroscience
    Sanggeon Park, Yeowool Huh ... Jeiwon Cho
    Research Article

    The brain’s ability to appraise threats and execute appropriate defensive responses is essential for survival in a dynamic environment. Humans studies have implicated the anterior insular cortex (aIC) in subjective fear regulation and its abnormal activity in fear/anxiety disorders. However, the complex aIC connectivity patterns involved in regulating fear remain under investigated. To address this, we recorded single units in the aIC of freely moving male mice that had previously undergone auditory fear conditioning, assessed the effect of optogenetically activating specific aIC output structures in fear, and examined the organization of aIC neurons projecting to the specific structures with retrograde tracing. Single-unit recordings revealed that a balanced number of aIC pyramidal neurons’ activity either positively or negatively correlated with a conditioned tone-induced freezing (fear) response. Optogenetic manipulations of aIC pyramidal neuronal activity during conditioned tone presentation altered the expression of conditioned freezing. Neural tracing showed that non-overlapping populations of aIC neurons project to the amygdala or the medial thalamus, and the pathway bidirectionally modulated conditioned fear. Specifically, optogenetic stimulation of the aIC-amygdala pathway increased conditioned freezing, while optogenetic stimulation of the aIC-medial thalamus pathway decreased it. Our findings suggest that the balance of freezing-excited and freezing-inhibited neuronal activity in the aIC and the distinct efferent circuits interact collectively to modulate fear behavior.

    1. Neuroscience
    Jonathan S Tsay, Hyosub E Kim ... Richard B Ivry
    Review Article

    Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, emphasizing the contribution of explicit strategies to sensorimotor learning tasks. Furthermore, we propose a theoretical framework for motor learning that consists of three fundamental processes: reasoning, the process of understanding action–outcome relationships; refinement, the process of optimizing sensorimotor and cognitive parameters to achieve motor goals; and retrieval, the process of inferring the context and recalling a control policy. We anticipate that this ‘3R’ framework for understanding how complex movements are learned will open exciting avenues for future research at the intersection between cognition and action.