Maternal spindle transfer overcomes embryo developmental arrest caused by ooplasmic defects in mice

  1. Nuno Costa-Borges  Is a corresponding author
  2. Katharina Spath
  3. Irene Miguel-Escalada
  4. Enric Mestres
  5. Rosa Balmaseda
  6. Anna Serafín
  7. Maria Garcia-Jiménez
  8. Ivette Vanrell
  9. Jesús González
  10. Klaus Rink
  11. Dagan Wells
  12. Gloria Calderón
  1. Embryotools SL, Spain
  2. University of Oxford, United Kingdom
  3. Centre for Genomic Regulation, Spain
  4. Parc Cientific de Barcelona, Spain

Abstract

The developmental potential of early embryos is mainly dictated by the quality of the oocyte. Here, we explore the utility of the maternal spindle transfer (MST) technique as a reproductive approach to enhance oocyte developmental competence. Our proof-of-concept experiments show that replacement of the entire cytoplasm of oocytes from a sensitive mouse strain overcomes massive embryo developmental arrest characteristic of non-manipulated oocytes. Genetic analysis confirmed minimal carryover of mtDNA following MST. Resulting mice showed low heteroplasmy levels in multiple organs at adult age, normal histology and fertility. Mice were followed for 5 generations (F5), revealing that heteroplasmy was reduced in F2 mice and was undetectable in the subsequent generations. This pre-clinical model demonstrates the high efficiency and potential of the MST technique, not only to prevent the transmission of mtDNA mutations, but also as a new potential treatment for patients with certain forms of infertility refractory to current clinical strategies.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Nuno Costa-Borges

    R&D Department, Embryotools SL, Barcelona, Spain
    For correspondence
    nuno.borges@embryotools.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2073-7515
  2. Katharina Spath

    Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Irene Miguel-Escalada

    Genomics and Bioinformatics, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3461-6404
  4. Enric Mestres

    R&D Department, Embryotools SL, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6140-6416
  5. Rosa Balmaseda

    Animal's Alliance Facility, Parc Cientific de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Anna Serafín

    Animal's Alliance Facility, Parc Cientific de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Maria Garcia-Jiménez

    R&D Department, Embryotools SL, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3321-8869
  8. Ivette Vanrell

    R&D Department, Embryotools SL, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Jesús González

    Animal's Alliance Facility, Parc Cientific de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Klaus Rink

    R&D Department, Embryotools SL, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Dagan Wells

    Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Gloria Calderón

    R&D Department, Embryotools SL, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3235-0323

Funding

European Regional Development Fund (RD-15-1-0011)

  • Nuno Costa-Borges

National Institutes of Health (1R01HD092550-01)

  • Dagan Wells

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal care and procedures were conducted according to protocols approved by the Ethics Committee on Animal Research (DAMM-7436) of the Parc Cientific of Barcelona (PCB), Spain.

Copyright

© 2020, Costa-Borges et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,167
    views
  • 412
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nuno Costa-Borges
  2. Katharina Spath
  3. Irene Miguel-Escalada
  4. Enric Mestres
  5. Rosa Balmaseda
  6. Anna Serafín
  7. Maria Garcia-Jiménez
  8. Ivette Vanrell
  9. Jesús González
  10. Klaus Rink
  11. Dagan Wells
  12. Gloria Calderón
(2020)
Maternal spindle transfer overcomes embryo developmental arrest caused by ooplasmic defects in mice
eLife 9:e48591.
https://doi.org/10.7554/eLife.48591

Share this article

https://doi.org/10.7554/eLife.48591

Further reading

    1. Cell Biology
    Fabian Link, Sisco Jung ... Brooke Morriswood
    Research Article

    The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.

    1. Cell Biology
    Georgia Maria Sagia, Xenia Georgiou ... Sofia Dimou
    Research Article Updated

    Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.