Tyr1 phosphorylation promotes phosphorylation of Ser2 on the C-terminal domain of eukaryotic RNA polymerase II by P-TEFb

Abstract

The Positive Transcription Elongation Factor b (P-TEFb) phosphorylates Ser2 residues of C-terminal domain (CTD) of the largest subunit (RPB1) of RNA polymerase II and is essential for the transition from transcription initiation to elongation in vivo. Surprisingly, P-TEFb exhibits Ser5 phosphorylation activity in vitro. The mechanism garnering Ser2 specificity to P-TEFb remains elusive and hinders understanding of the transition from transcription initiation to elongation. Through in vitro reconstruction of CTD phosphorylation, mass spectrometry analysis, and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we uncover a mechanism by which Tyr1 phosphorylation directs the kinase activity of P-TEFb and alters its specificity from Ser5 to Ser2. The loss of Tyr1 phosphorylation causes an accumulation of RNA polymerase II in the promoter region as detected by ChIP-seq. We demonstrate the ability of Tyr1 phosphorylation to generate a heterogeneous CTD modification landscape that expands the CTD’s coding potential. These findings provide direct experimental evidence for a combinatorial CTD phosphorylation code wherein previously installed modifications direct the identity and abundance of subsequent coding events by influencing the behavior of downstream enzymes.

Data availability

All mass spec data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided in Figure 3f, Figure 1-figure supplement 2 and Figure 3-figure supplement 2 and 4.

The following data sets were generated

Article and author information

Author details

  1. Joshua E Mayfield

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Seema Irani

    Department of Chemical Engineering, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Edwin E Escobar

    Department of Chemistry, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0086-6264
  4. Zhao Zhang

    Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nathaniel T Burkholder

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michelle R Robinson

    Department of Chemistry, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. M Rachel Mehaffey

    Department of Chemistry, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sarah N Sipe

    Department of Chemistry, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4554-7571
  9. Wanjie Yang

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nicholas A Prescott

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0635-8906
  11. Karan Kathuria

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhijie Liu

    Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jennifer Brodbelt

    Department of Chemistry, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Yan Zhang

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    For correspondence
    jzhang@cm.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9360-5388

Funding

National Institute of General Medical Sciences (R01 GM104896)

  • Yan Zhang

National Institute of General Medical Sciences (R01 RM125882)

  • Jennifer Brodbelt

National Institute of Biomedical Imaging and Bioengineering (R21EB018391)

  • Jennifer Brodbelt

Welch Foundation (F-1778)

  • Yan Zhang

Welch Foundation (F-1155)

  • Jennifer Brodbelt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jerry L Workman, Stowers Institute for Medical Research, United States

Version history

  1. Received: May 23, 2019
  2. Accepted: August 5, 2019
  3. Accepted Manuscript published: August 6, 2019 (version 1)
  4. Version of Record published: August 29, 2019 (version 2)

Copyright

© 2019, Mayfield et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,227
    views
  • 407
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua E Mayfield
  2. Seema Irani
  3. Edwin E Escobar
  4. Zhao Zhang
  5. Nathaniel T Burkholder
  6. Michelle R Robinson
  7. M Rachel Mehaffey
  8. Sarah N Sipe
  9. Wanjie Yang
  10. Nicholas A Prescott
  11. Karan Kathuria
  12. Zhijie Liu
  13. Jennifer Brodbelt
  14. Yan Zhang
(2019)
Tyr1 phosphorylation promotes phosphorylation of Ser2 on the C-terminal domain of eukaryotic RNA polymerase II by P-TEFb
eLife 8:e48725.
https://doi.org/10.7554/eLife.48725

Share this article

https://doi.org/10.7554/eLife.48725

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.