Tyr1 phosphorylation promotes phosphorylation of Ser2 on the C-terminal domain of eukaryotic RNA polymerase II by P-TEFb

Abstract

The Positive Transcription Elongation Factor b (P-TEFb) phosphorylates Ser2 residues of C-terminal domain (CTD) of the largest subunit (RPB1) of RNA polymerase II and is essential for the transition from transcription initiation to elongation in vivo. Surprisingly, P-TEFb exhibits Ser5 phosphorylation activity in vitro. The mechanism garnering Ser2 specificity to P-TEFb remains elusive and hinders understanding of the transition from transcription initiation to elongation. Through in vitro reconstruction of CTD phosphorylation, mass spectrometry analysis, and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we uncover a mechanism by which Tyr1 phosphorylation directs the kinase activity of P-TEFb and alters its specificity from Ser5 to Ser2. The loss of Tyr1 phosphorylation causes an accumulation of RNA polymerase II in the promoter region as detected by ChIP-seq. We demonstrate the ability of Tyr1 phosphorylation to generate a heterogeneous CTD modification landscape that expands the CTD’s coding potential. These findings provide direct experimental evidence for a combinatorial CTD phosphorylation code wherein previously installed modifications direct the identity and abundance of subsequent coding events by influencing the behavior of downstream enzymes.

Data availability

All mass spec data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided in Figure 3f, Figure 1-figure supplement 2 and Figure 3-figure supplement 2 and 4.

The following data sets were generated

Article and author information

Author details

  1. Joshua E Mayfield

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Seema Irani

    Department of Chemical Engineering, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Edwin E Escobar

    Department of Chemistry, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0086-6264
  4. Zhao Zhang

    Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nathaniel T Burkholder

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michelle R Robinson

    Department of Chemistry, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. M Rachel Mehaffey

    Department of Chemistry, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sarah N Sipe

    Department of Chemistry, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4554-7571
  9. Wanjie Yang

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nicholas A Prescott

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0635-8906
  11. Karan Kathuria

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhijie Liu

    Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jennifer Brodbelt

    Department of Chemistry, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Yan Zhang

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    For correspondence
    jzhang@cm.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9360-5388

Funding

National Institute of General Medical Sciences (R01 GM104896)

  • Yan Zhang

National Institute of General Medical Sciences (R01 RM125882)

  • Jennifer Brodbelt

National Institute of Biomedical Imaging and Bioengineering (R21EB018391)

  • Jennifer Brodbelt

Welch Foundation (F-1778)

  • Yan Zhang

Welch Foundation (F-1155)

  • Jennifer Brodbelt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Mayfield et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,384
    views
  • 422
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua E Mayfield
  2. Seema Irani
  3. Edwin E Escobar
  4. Zhao Zhang
  5. Nathaniel T Burkholder
  6. Michelle R Robinson
  7. M Rachel Mehaffey
  8. Sarah N Sipe
  9. Wanjie Yang
  10. Nicholas A Prescott
  11. Karan Kathuria
  12. Zhijie Liu
  13. Jennifer Brodbelt
  14. Yan Zhang
(2019)
Tyr1 phosphorylation promotes phosphorylation of Ser2 on the C-terminal domain of eukaryotic RNA polymerase II by P-TEFb
eLife 8:e48725.
https://doi.org/10.7554/eLife.48725

Share this article

https://doi.org/10.7554/eLife.48725

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.