Molecular mechanism of TRPV2 channel modulation by cannabidiol

  1. Ruth A Pumroy
  2. Amrita Samanta
  3. Yuhang Liu
  4. Taylor ET Hughes
  5. Siyuan Zhao
  6. Yevgen Yudin
  7. Tibor Rohacs
  8. Seungil Han  Is a corresponding author
  9. Vera Y Moiseenkova-Bell  Is a corresponding author
  1. University of Pennsylvania, United States
  2. Pfizer Research and Development, United States
  3. New Jersey Medical School, Rutgers, the State University of New Jersey, United States

Abstract

Transient receptor potential vanilloid 2 (TRPV2) plays a critical role in neuronal development, cardiac function, immunity, and cancer. Cannabidiol (CBD), the non-psychotropic therapeutically active ingredient of Cannabis sativa, is an activator of TRPV2 and also modulates other transient receptor potential (TRP) channels. Here, we determined structures of the full-length rat TRPV2 channel in apo and CBD-bound states in nanodiscs by cryo-electron microscopy. We show that CBD interacts with TRPV2 through a hydrophobic pocket located between S5 and S6 helices of adjacent subunits, which differs from known ligand and lipid binding sites in other TRP channels. CBD-bound TRPV2 structures revealed that the S4-S5 linker plays a critical role in channel gating upon CBD binding. Additionally, nanodiscs permitted us to visualize two distinct TRPV2 apo states in a lipid environment. Together these results provide a foundation to further understand TRPV channel gating, their divergent physiological functions, and to accelerate structure-based drug design.

Data availability

cryoEM maps have been deposited in the Electron Microscopy Data Bank under the following accession codes: EMD-20677, EMD-20678, EMD-20686, EMD-20682The models built into the cryoEM maps have been deposited into the Protein Data Bank under the following accession codes: 6U84, 6U85, 6U8A, 6U88The maps and models analyzed in this study are included with the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Ruth A Pumroy

    Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  2. Amrita Samanta

    Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Yuhang Liu

    Pfizer Research and Development, Groton, United States
    Competing interests
    Yuhang Liu, is affiliated with Pfizer Research and Development. The author has no financial interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6844-7480
  4. Taylor ET Hughes

    Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  5. Siyuan Zhao

    Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, United States
    Competing interests
    No competing interests declared.
  6. Yevgen Yudin

    Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, United States
    Competing interests
    No competing interests declared.
  7. Tibor Rohacs

    Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3580-2575
  8. Seungil Han

    Pfizer Research and Development, Groton, United States
    For correspondence
    seungil.han@pfizer.com
    Competing interests
    Seungil Han, is affiliated with Pfizer Research and Development. The author has no financial interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1070-3880
  9. Vera Y Moiseenkova-Bell

    Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    vmb@pennmedicine.upenn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0589-4053

Funding

National Institutes of Health (R01GM129357)

  • Vera Y Moiseenkova-Bell

National Institutes of Health (R01GM103899)

  • Vera Y Moiseenkova-Bell

National Institutes of Health (R01 NS055159)

  • Tibor Rohacs

National Institutes of Health (R01GM093290)

  • Tibor Rohacs

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leon D Islas, Universidad Nacional Autónoma de México, Mexico

Version history

  1. Received: May 25, 2019
  2. Accepted: September 27, 2019
  3. Accepted Manuscript published: September 30, 2019 (version 1)
  4. Version of Record published: October 15, 2019 (version 2)

Copyright

© 2019, Pumroy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,999
    views
  • 941
    downloads
  • 100
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruth A Pumroy
  2. Amrita Samanta
  3. Yuhang Liu
  4. Taylor ET Hughes
  5. Siyuan Zhao
  6. Yevgen Yudin
  7. Tibor Rohacs
  8. Seungil Han
  9. Vera Y Moiseenkova-Bell
(2019)
Molecular mechanism of TRPV2 channel modulation by cannabidiol
eLife 8:e48792.
https://doi.org/10.7554/eLife.48792

Share this article

https://doi.org/10.7554/eLife.48792

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.