Matrix metalloproteinase 1 modulates invasive behavior of tracheal branches during entry into Drosophila flight muscles

  1. Julia Sauerwald
  2. Wilko Backer
  3. Till Matzat
  4. Frank Schnorrer
  5. Stefan Luschnig  Is a corresponding author
  1. University of Münster, Germany
  2. Aix Marseille University, France

Abstract

Tubular networks like the vasculature extend branches throughout animal bodies, but how developing vessels interact with and invade tissues is not well understood. We investigated the underlying mechanisms using the developing tracheal tube network of Drosophila indirect flight muscles (IFMs) as a model. Live imaging revealed that tracheal sprouts invade IFMs directionally with growth-cone-like structures at branch tips. Ramification inside IFMs proceeds until tracheal branches fill the myotube. However, individual tracheal cells occupy largely separate territories, possibly mediated by cell-cell repulsion. Matrix metalloproteinase 1 (MMP1) is required in tracheal cells for normal invasion speed and for the dynamic organization of growth-cone-like branch tips. MMP1 remodels the CollagenIV-containing matrix around branch tips, which show differential matrix composition with low CollagenIV levels, while Laminin is present along tracheal branches. Thus, tracheal-derived MMP1 sustains branch invasion by modulating the dynamic behavior of sprouting branches as well as properties of the surrounding matrix.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Julia Sauerwald

    Institute of Zoophysiology, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Wilko Backer

    Institute of Zoophysiology, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Till Matzat

    Institute of Zoophysiology, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Frank Schnorrer

    Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9518-7263
  5. Stefan Luschnig

    Institute of Zoophysiology, University of Münster, Münster, Germany
    For correspondence
    luschnig@uni-muenster.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0634-3368

Funding

Boehringer Ingelheim Fonds (Fellowship)

  • Julia Sauerwald

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF 31003A_141093_1)

  • Julia Sauerwald
  • Till Matzat
  • Stefan Luschnig

Deutsche Forschungsgemeinschaft (Cluster of Excellence)

  • Julia Sauerwald
  • Wilko Backer
  • Till Matzat
  • Stefan Luschnig

European Molecular Biology Organization (Young Investigator Programme)

  • Frank Schnorrer

H2020 European Research Council (310939)

  • Frank Schnorrer

Centre National de la Recherche Scientifique

  • Frank Schnorrer

Excellence Initiative Aix-Marseille University AMIDEX (ANR-11-IDEX-0001-02)

  • Frank Schnorrer

LabEX-INFORM (ANR-11-LABX-0054)

  • Frank Schnorrer

Bettencourt Foundation

  • Frank Schnorrer

Deutsche Forschungsgemeinschaft (CRC 1348)

  • Stefan Luschnig

Deutsche Forschungsgemeinschaft (CRC 1009)

  • Stefan Luschnig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Version history

  1. Received: May 28, 2019
  2. Accepted: October 1, 2019
  3. Accepted Manuscript published: October 2, 2019 (version 1)
  4. Version of Record published: October 16, 2019 (version 2)

Copyright

© 2019, Sauerwald et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,266
    views
  • 328
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia Sauerwald
  2. Wilko Backer
  3. Till Matzat
  4. Frank Schnorrer
  5. Stefan Luschnig
(2019)
Matrix metalloproteinase 1 modulates invasive behavior of tracheal branches during entry into Drosophila flight muscles
eLife 8:e48857.
https://doi.org/10.7554/eLife.48857

Share this article

https://doi.org/10.7554/eLife.48857

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.

    1. Cell Biology
    2. Neuroscience
    Georg Kislinger, Gunar Fabig ... Martina Schifferer
    Tools and Resources

    Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed ‘ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.