BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian embryogenesis

  1. Hyung-Seok Kim
  2. Judith Neugebauer
  3. Autumn McKnite
  4. Anup Tilak
  5. Jan L Christian  Is a corresponding author
  1. University of Utah, United States
  2. Oregon Health and Sciences University, United States

Abstract

BMP7/BMP2 or BMP7/BMP4 heterodimers are more active than homodimers in vitro, but it is not known whether these heterodimers signal in vivo. To test this, we generated knock in mice carrying a mutation (Bmp7R-GFlag) that prevents proteolytic activation of the dimerized BMP7 precursor protein. This mutation eliminates the function of BMP7 homodimers and all other BMPs that normally heterodimerize with BMP7. While Bmp7 null homozygotes are live born, Bmp7R-GFlag homozygotes are embryonic lethal and have broadly reduced BMP activity. Furthermore, compound heterozygotes carrying the Bmp7R-G allele together with a null allele of Bmp2 or Bmp4 die during embryogenesis with defects in ventral body wall closure and/or the heart. Co-immunoprecipitation assays confirm that endogenous BMP4/7 heterodimers exist. Thus, BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian development, which may explain why mutations in either Bmp4 or Bmp7 lead to a similar spectrum of congenital defects in humans.

Data availability

All data generated and analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hyung-Seok Kim

    Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Judith Neugebauer

    Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Autumn McKnite

    Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anup Tilak

    Department of Cell and Developmental Biology, Oregon Health and Sciences University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jan L Christian

    Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, United States
    For correspondence
    jan.christian@neuro.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3812-3658

Funding

National Institutes of Health (RO1HD037976)

  • Jan L Christian

National Institutes of Health (T32DK007115)

  • Judith Neugebauer

National Institutes of Health (T32HD007491)

  • Autumn McKnite

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal procedures followed protocols approved by the University of Utah Institutional Animal Care and Use Committee (protocol #17-03007).

Version history

  1. Received: May 29, 2019
  2. Accepted: September 28, 2019
  3. Accepted Manuscript published: September 30, 2019 (version 1)
  4. Version of Record published: October 9, 2019 (version 2)

Copyright

© 2019, KIm et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,731
    Page views
  • 372
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hyung-Seok Kim
  2. Judith Neugebauer
  3. Autumn McKnite
  4. Anup Tilak
  5. Jan L Christian
(2019)
BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian embryogenesis
eLife 8:e48872.
https://doi.org/10.7554/eLife.48872

Share this article

https://doi.org/10.7554/eLife.48872

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.