Differential impact of self and environmental antigens on the ontogeny and maintenance of CD4+ T cell memory

  1. Thea Hogan
  2. Maria Nowicka
  3. Daniel Cownden
  4. Claire F Pearson
  5. Andrew J Yates  Is a corresponding author
  6. Benedict Seddon  Is a corresponding author
  1. University College London, United Kingdom
  2. Columbia University, United States
  3. University of Glasgow, United Kingdom
  4. University of Oxford, United Kingdom

Abstract

Laboratory mice develop populations of circulating memory CD4+ T cells in the absence of overt infection. We have previously shown that these populations are replenished from naive precursors at high levels throughout life (Gossel et al., 2017). However, the nature, relative importance and timing of the forces generating these cells remain unclear. Here, we tracked the generation of memory CD4+ T cell subsets in mice housed in facilities differing in their 'dirtiness'. We found evidence for sequential naive to central memory to effector memory development, and confirmed that both memory subsets are heterogeneous in their rates of turnover. We also inferred that early exposure to self and environmental antigens establishes persistent memory populations at levels determined largely, though not exclusively, by the dirtiness of the environment. After the first few weeks of life, however, these populations are continuously supplemented by new memory cells at rates that are independent of environment.

Data availability

Following our invitation to make a revised submission, the code for mathematical models has been deposited on GitHub (https://github.com/marianowicka/memory-CD4-and-dirt.git) , and raw cell counts used for model fitting are provided as source data files, as featured in figures 1, 5 and 7.

Article and author information

Author details

  1. Thea Hogan

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria Nowicka

    Department of Pathology and Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Cownden

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Claire F Pearson

    Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew J Yates

    Department of Pathology and Cell Biology, Columbia University, New York, United States
    For correspondence
    ajy2115@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4606-4483
  6. Benedict Seddon

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    For correspondence
    benedict.seddon@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4352-3373

Funding

National Institutes of Health (R01 AI093870)

  • Thea Hogan
  • Maria Nowicka
  • Daniel Cownden
  • Andrew J Yates

Medical Research Council (MR/P011225/1)

  • Benedict Seddon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rob J. de Boer, Utrecht University, Netherlands

Ethics

Animal experimentation: Animal experiments were performed according to the UCL Animal Welfare and Ethical Review Body and Home Office regulations under PPL 70-8310.

Version history

  1. Received: June 4, 2019
  2. Accepted: November 17, 2019
  3. Accepted Manuscript published: November 19, 2019 (version 1)
  4. Version of Record published: December 11, 2019 (version 2)

Copyright

© 2019, Hogan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,807
    views
  • 291
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thea Hogan
  2. Maria Nowicka
  3. Daniel Cownden
  4. Claire F Pearson
  5. Andrew J Yates
  6. Benedict Seddon
(2019)
Differential impact of self and environmental antigens on the ontogeny and maintenance of CD4+ T cell memory
eLife 8:e48901.
https://doi.org/10.7554/eLife.48901

Share this article

https://doi.org/10.7554/eLife.48901

Further reading

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Rajan M Thomas, Matthew C Pahl ... Andrew D Wells
    Research Article

    Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.