Differential impact of self and environmental antigens on the ontogeny and maintenance of CD4+ T cell memory

  1. Thea Hogan
  2. Maria Nowicka
  3. Daniel Cownden
  4. Claire F Pearson
  5. Andrew J Yates  Is a corresponding author
  6. Benedict Seddon  Is a corresponding author
  1. University College London, United Kingdom
  2. Columbia University, United States
  3. University of Glasgow, United Kingdom
  4. University of Oxford, United Kingdom

Abstract

Laboratory mice develop populations of circulating memory CD4+ T cells in the absence of overt infection. We have previously shown that these populations are replenished from naive precursors at high levels throughout life (Gossel et al., 2017). However, the nature, relative importance and timing of the forces generating these cells remain unclear. Here, we tracked the generation of memory CD4+ T cell subsets in mice housed in facilities differing in their 'dirtiness'. We found evidence for sequential naive to central memory to effector memory development, and confirmed that both memory subsets are heterogeneous in their rates of turnover. We also inferred that early exposure to self and environmental antigens establishes persistent memory populations at levels determined largely, though not exclusively, by the dirtiness of the environment. After the first few weeks of life, however, these populations are continuously supplemented by new memory cells at rates that are independent of environment.

Data availability

Following our invitation to make a revised submission, the code for mathematical models has been deposited on GitHub (https://github.com/marianowicka/memory-CD4-and-dirt.git) , and raw cell counts used for model fitting are provided as source data files, as featured in figures 1, 5 and 7.

Article and author information

Author details

  1. Thea Hogan

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria Nowicka

    Department of Pathology and Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Cownden

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Claire F Pearson

    Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew J Yates

    Department of Pathology and Cell Biology, Columbia University, New York, United States
    For correspondence
    ajy2115@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4606-4483
  6. Benedict Seddon

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    For correspondence
    benedict.seddon@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4352-3373

Funding

National Institutes of Health (R01 AI093870)

  • Thea Hogan
  • Maria Nowicka
  • Daniel Cownden
  • Andrew J Yates

Medical Research Council (MR/P011225/1)

  • Benedict Seddon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were performed according to the UCL Animal Welfare and Ethical Review Body and Home Office regulations under PPL 70-8310.

Copyright

© 2019, Hogan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,840
    views
  • 293
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thea Hogan
  2. Maria Nowicka
  3. Daniel Cownden
  4. Claire F Pearson
  5. Andrew J Yates
  6. Benedict Seddon
(2019)
Differential impact of self and environmental antigens on the ontogeny and maintenance of CD4+ T cell memory
eLife 8:e48901.
https://doi.org/10.7554/eLife.48901

Share this article

https://doi.org/10.7554/eLife.48901

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.