Layer 6 ensembles can selectively regulate the behavioral impact and layer-specific representation of sensory deviants

  1. Jakob Voigts  Is a corresponding author
  2. Christopher A Deister
  3. Christopher I Moore  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Brown University, United States

Abstract

Predictive models can enhance the salience of unanticipated input. Here, we tested a key potential node in neocortical model formation in this process, layer (L) 6, using behavioral, electrophysiological and imaging methods in mouse primary somatosensory neocortex. We found that deviant stimuli enhanced tactile detection and were encoded in L2/3 neural tuning. To test the contribution of L6, we applied weak optogenetic drive that changed which L6 neurons were sensory responsive, without affecting overall firing rates in L6 or L2/3. This stimulation selectively suppressed behavioral sensitivity to deviant stimuli, without impacting baseline performance. This stimulation also eliminated deviance encoding in L2/3 but did not impair basic stimulus responses across layers. In contrast, stronger L6 drive inhibited firing and suppressed overall sensory function. These findings indicate that, despite their sparse activity, specific ensembles of stimulus driven L6 neurons are required to form neocortical predictions, and to realize their behavioral benefit.

Data availability

Underlying data for all main result figures is included in the supporting files.

Article and author information

Author details

  1. Jakob Voigts

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    jvoigts@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5174-7214
  2. Christopher A Deister

    Department of Neuroscience and Brown Institute for Brain Sciences, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christopher I Moore

    Department of Neuroscience, Brown University, Providence, United States
    For correspondence
    Christopher_Moore@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4534-1602

Funding

National Institutes of Health (R01NS045130)

  • Christopher I Moore

National Institutes of Health (F32MH100749)

  • Christopher A Deister

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John R Huguenard, Stanford University School of Medicine, United States

Ethics

Animal experimentation: All procedures and animal care protocols conformed to guidelines established by the National Institutes of Health, and approved by the Institutional Animal Care and Use Committee (IACUC) protocol (#1710000308) at Brown University (PHS Animal Welfare Assurance number D16-00183)

Version history

  1. Received: June 1, 2019
  2. Accepted: December 1, 2020
  3. Accepted Manuscript published: December 2, 2020 (version 1)
  4. Version of Record published: January 20, 2021 (version 2)

Copyright

© 2020, Voigts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,555
    views
  • 343
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jakob Voigts
  2. Christopher A Deister
  3. Christopher I Moore
(2020)
Layer 6 ensembles can selectively regulate the behavioral impact and layer-specific representation of sensory deviants
eLife 9:e48957.
https://doi.org/10.7554/eLife.48957

Share this article

https://doi.org/10.7554/eLife.48957

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here we addressed how murine adult hippocampal NSC fate is regulated and describe how Scaffold Attachment Factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor Nuclear Factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.

    1. Neuroscience
    Paula Banca, Maria Herrojo Ruiz ... Trevor W Robbins
    Research Article

    This study investigates the goal/habit imbalance theory of compulsion in obsessive-compulsive disorder (OCD), which postulates enhanced habit formation, increased automaticity, and impaired goal/habit arbitration. It directly tests these hypotheses using newly developed behavioral tasks. First, OCD patients and healthy participants were trained daily for a month using a smartphone app to perform chunked action sequences. Despite similar procedural learning and attainment of habitual performance (measured by an objective automaticity criterion) by both groups, OCD patients self-reported higher subjective habitual tendencies via a recently developed questionnaire. Subsequently, in a re-evaluation task assessing choices between established automatic and novel goal-directed actions, both groups were sensitive to re-evaluation based on monetary feedback. However, OCD patients, especially those with higher compulsive symptoms and habitual tendencies, showed a clear preference for trained/habitual sequences when choices were based on physical effort, possibly due to their higher attributed intrinsic value. These patients also used the habit-training app more extensively and reported symptom relief post-study. The tendency to attribute higher intrinsic value to familiar actions may be a potential mechanism leading to compulsions and an important addition to the goal/habit imbalance hypothesis in OCD. We also highlight the potential of smartphone app training as a habit reversal therapeutic tool.