Structural insights into flagellar stator-rotor interactions

  1. Yunjie Chang
  2. Ki Hwan Moon
  3. Xiaowei Zhao
  4. Steven J Norris
  5. MD A Motaleb  Is a corresponding author
  6. Jun Liu  Is a corresponding author
  1. Yale University, United States
  2. East Carolina University, United States
  3. University of Texas Health Science Center at Houston, United States

Abstract

The bacterial flagellar motor is a molecular machine that can rotate the flagellar filament at high speed. The rotation is generated by the stator-rotor interaction, coupled with an ion flux through the torque-generating stator. Here we employed cryo-electron tomography to visualize the intact flagellar motor in the Lyme disease spirochete, Borrelia burgdorferi. By analyzing the motor structures of wild-type and stator-deletion mutants, we not only localized the stator complex in situ, but also revealed the stator-rotor interaction at an unprecedented detail. Importantly, the stator-rotor interaction induces a conformational change in the flagella C-ring. Given our observation that a non-motile mutant, in which proton flux is blocked, cannot generate the similar conformational change, we propose that the proton-driven torque is responsible for the conformational change required for flagellar rotation.

Data availability

Data have been placed in the Electron Microscopy Data Bank under the accession numbers EMD-0534, EMD-0536, EMD-0537, and EMD-0538

The following data sets were generated

Article and author information

Author details

  1. Yunjie Chang

    Department of Microbial Pathogenesis, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ki Hwan Moon

    Department of Microbiology and Immunology, East Carolina University, Greenville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaowei Zhao

    Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Steven J Norris

    Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. MD A Motaleb

    Department of Microbiology and Immunology, East Carolina University, Greenville, United States
    For correspondence
    MOTALEBM@ecu.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun Liu

    Department of Microbial Pathogenesis, Yale University, West Haven, United States
    For correspondence
    jliu@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3108-6735

Funding

National Institute of Allergy and Infectious Diseases (R01AI087946)

  • Jun Liu

National Institute of Allergy and Infectious Diseases (R01AI132818)

  • MD A Motaleb

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Chang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,743
    views
  • 464
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yunjie Chang
  2. Ki Hwan Moon
  3. Xiaowei Zhao
  4. Steven J Norris
  5. MD A Motaleb
  6. Jun Liu
(2019)
Structural insights into flagellar stator-rotor interactions
eLife 8:e48979.
https://doi.org/10.7554/eLife.48979

Share this article

https://doi.org/10.7554/eLife.48979

Further reading

    1. Microbiology and Infectious Disease
    Nicholas J Hathaway, Isaac E Kim ... Jeffrey A Bailey
    Research Article

    Most malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and PfHRP3, but deletions of pfhrp2 and phfrp3 genes make parasites undetectable by RDTs. We analyzed 19,313 public whole-genome-sequenced P. falciparum field samples to understand these deletions better. Pfhrp2 deletion only occurred by chromosomal breakage with subsequent telomere healing. Pfhrp3 deletions involved loss from pfhrp3 to the telomere and showed three patterns: no other associated rearrangement with evidence of telomere healing at breakpoint (Asia; Pattern 13-TARE1); associated with duplication of a chromosome 5 segment containing multidrug-resistant-1 gene (Asia; Pattern 13-5++); and most commonly, associated with duplication of a chromosome 11 segment (Americas/Africa; Pattern 13-11++). We confirmed a 13–11 hybrid chromosome with long-read sequencing, consistent with a translocation product arising from recombination between large interchromosomal ribosome-containing segmental duplications. Within most 13-11++ parasites, the duplicated chromosome 11 segments were identical. Across parasites, multiple distinct haplotype groupings were consistent with emergence due to clonal expansion of progeny from intrastrain meiotic recombination. Together, these observations suggest negative selection normally removes 13-11++pfhrp3 deletions, and specific conditions are needed for their emergence and spread including low transmission, findings that can help refine surveillance strategies.

    1. Microbiology and Infectious Disease
    Hebin Liao, Xiaodan Yan ... Yingying Pu
    Research Article

    Biofilms are complex bacterial communities characterized by a high persister prevalence, which contributes to chronic and relapsing infections. Historically, persister formation in biofilms has been linked to constraints imposed by their dense structures. However, we observed an elevated persister frequency accompanying the stage of cell adhesion, marking the onset of biofilm development. Subsequent mechanistic studies uncovered a comparable type of toxin-antitoxin (TA) module (TA-like system) triggered by cell adhesion, which is responsible for this elevation. In this module, the toxin HipH acts as a genotoxic deoxyribonuclease, inducing DNA double strand breaks and genome instability. While the second messenger c-di-GMP functions as the antitoxin, exerting control over HipH expression and activity. The dynamic interplay between c-di-GMP and HipH levels emerges as a crucial determinant governing genome stability and persister generation within biofilms. These findings unveil a unique TA system, where small molecules act as the antitoxin, outlining a biofilm-specific molecular mechanism influencing genome stability and antibiotic persistence, with potential implications for treating biofilm infections.