Structural insights into flagellar stator-rotor interactions

  1. Yunjie Chang
  2. Ki Hwan Moon
  3. Xiaowei Zhao
  4. Steven J Norris
  5. MD A Motaleb  Is a corresponding author
  6. Jun Liu  Is a corresponding author
  1. Yale University, United States
  2. East Carolina University, United States
  3. University of Texas Health Science Center at Houston, United States

Abstract

The bacterial flagellar motor is a molecular machine that can rotate the flagellar filament at high speed. The rotation is generated by the stator-rotor interaction, coupled with an ion flux through the torque-generating stator. Here we employed cryo-electron tomography to visualize the intact flagellar motor in the Lyme disease spirochete, Borrelia burgdorferi. By analyzing the motor structures of wild-type and stator-deletion mutants, we not only localized the stator complex in situ, but also revealed the stator-rotor interaction at an unprecedented detail. Importantly, the stator-rotor interaction induces a conformational change in the flagella C-ring. Given our observation that a non-motile mutant, in which proton flux is blocked, cannot generate the similar conformational change, we propose that the proton-driven torque is responsible for the conformational change required for flagellar rotation.

Data availability

Data have been placed in the Electron Microscopy Data Bank under the accession numbers EMD-0534, EMD-0536, EMD-0537, and EMD-0538

The following data sets were generated

Article and author information

Author details

  1. Yunjie Chang

    Department of Microbial Pathogenesis, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ki Hwan Moon

    Department of Microbiology and Immunology, East Carolina University, Greenville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaowei Zhao

    Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Steven J Norris

    Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. MD A Motaleb

    Department of Microbiology and Immunology, East Carolina University, Greenville, United States
    For correspondence
    MOTALEBM@ecu.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun Liu

    Department of Microbial Pathogenesis, Yale University, West Haven, United States
    For correspondence
    jliu@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3108-6735

Funding

National Institute of Allergy and Infectious Diseases (R01AI087946)

  • Jun Liu

National Institute of Allergy and Infectious Diseases (R01AI132818)

  • MD A Motaleb

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edward H Egelman, University of Virginia, United States

Version history

  1. Received: June 2, 2019
  2. Accepted: July 12, 2019
  3. Accepted Manuscript published: July 17, 2019 (version 1)
  4. Version of Record published: July 29, 2019 (version 2)
  5. Version of Record updated: October 18, 2019 (version 3)

Copyright

© 2019, Chang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,518
    Page views
  • 452
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yunjie Chang
  2. Ki Hwan Moon
  3. Xiaowei Zhao
  4. Steven J Norris
  5. MD A Motaleb
  6. Jun Liu
(2019)
Structural insights into flagellar stator-rotor interactions
eLife 8:e48979.
https://doi.org/10.7554/eLife.48979

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Abdoulie O Touray, Rishi Rajesh ... Igor Cestari
    Research Article

    African trypanosomes evade host immune clearance by antigenic variation, causing persistent infections in humans and animals. These parasites express a homogeneous surface coat of variant surface glycoproteins (VSGs). They transcribe one out of hundreds of VSG genes at a time from telomeric expression sites (ESs) and periodically change the VSG expressed by transcriptional switching or recombination. The mechanisms underlying the control of VSG switching and its developmental silencing remain elusive. We report that telomeric ES activation and silencing entail an on/off genetic switch controlled by a nuclear phosphoinositide signaling system. This system includes a nuclear phosphatidylinositol 5-phosphatase (PIP5Pase), its substrate PI(3,4,5)P3, and the repressor-activator protein 1 (RAP1). RAP1 binds to ES sequences flanking VSG genes via its DNA binding domains and represses VSG transcription. In contrast, PI(3,4,5)P3 binds to the N-terminus of RAP1 and controls its DNA binding activity. Transient inactivation of PIP5Pase results in the accumulation of nuclear PI(3,4,5)P3, which binds RAP1 and displaces it from ESs, activating transcription of silent ESs and VSG switching. The system is also required for the developmental silencing of VSG genes. The data provides a mechanism controlling reversible telomere silencing essential for the periodic switching in VSG expression and its developmental regulation.

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Christopher Kesten, Valentin Leitner ... Clara Sanchez-Rodriguez
    Research Article

    Purinergic signaling activated by extracellular nucleotides and their derivative nucleosides trigger sophisticated signaling networks. The outcome of these pathways determine the capacity of the organism to survive under challenging conditions. Both extracellular ATP (eATP) and Adenosine (eAdo) act as primary messengers in mammals, essential for immunosuppressive responses. Despite the clear role of eATP as a plant damage-associated molecular pattern, the function of its nucleoside, eAdo, and of the eAdo/eATP balance in plant stress response remain to be fully elucidated. This is particularly relevant in the context of plant-microbe interaction, where the intruder manipulates the extracellular matrix. Here, we identify Ado as a main molecule secreted by the vascular fungus Fusarium oxysporum. We show that eAdo modulates the plant's susceptibility to fungal colonization by altering the eATP-mediated apoplastic pH homeostasis, an essential physiological player during the infection of this pathogen. Our work indicates that plant pathogens actively imbalance the apoplastic eAdo/eATP levels as a virulence mechanism.