1. Neuroscience
Download icon

Optical dopamine monitoring with dLight1 reveals mesolimbic phenotypes in a mouse model of neurofibromatosis type 1

  1. J Elliott Robinson
  2. Gerard M Coughlin
  3. Acacia M Hori
  4. Jounhong Ryan Cho
  5. Elisha D Mackey
  6. Zeynep Turan
  7. Tommaso Patriarchi
  8. Lin Tian
  9. Viviana Gradinaru  Is a corresponding author
  1. California Institute of Technology, United States
  2. University of California, Davis, United States
Research Article
  • Cited 6
  • Views 4,202
  • Annotations
Cite this article as: eLife 2019;8:e48983 doi: 10.7554/eLife.48983

Abstract

Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder whose neurodevelopmental symptoms include impaired executive function, attention, and spatial learning that could be due to perturbed mesolimbic dopaminergic circuitry. However, these circuits have never been directly assayed in vivo. We employed the genetically encoded optical dopamine sensor dLight1 to monitor dopaminergic neurotransmission in the ventral striatum of NF1 mice during motivated behavior. Additionally, we developed novel systemic AAV vectors to facilitate morphological reconstruction of dopaminergic populations in cleared tissue. We found that NF1 mice exhibit reduced spontaneous dopaminergic neurotransmission that was associated with excitation/inhibition imbalance in the ventral tegmental area and abnormal neuronal morphology. NF1 mice also had more robust dopaminergic and behavioral responses to salient visual stimuli, which were stimulus-dependent, independent of learning, and rescued by optogenetic inhibition of non-dopaminergic neurons in the VTA. Overall, these studies provide a first in vivo characterization of dopaminergic circuit function in the context of NF1 and reveal novel pathophysiological mechanisms.

Article and author information

Author details

  1. J Elliott Robinson

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9417-3938
  2. Gerard M Coughlin

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Acacia M Hori

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jounhong Ryan Cho

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Elisha D Mackey

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zeynep Turan

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tommaso Patriarchi

    Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lin Tian

    Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7012-6926
  9. Viviana Gradinaru

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    viviana@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5868-348X

Funding

National Institutes of Health (IDP20D017782-01)

  • Viviana Gradinaru

National Science and Engineering Research Council of Canada (Postgraduate Scholarship-Doctoral)

  • Gerard M Coughlin

National Institutes of Health (PECASE)

  • Viviana Gradinaru

National Institutes of Health (RF1MH117069)

  • Viviana Gradinaru

National Science Foundation (1707316)

  • Viviana Gradinaru

Heritage Medical Research Institute

  • Viviana Gradinaru

Tianqiao and Chrissy Chen Institute for Neuroscience

  • Viviana Gradinaru

National Institutes of Health (U01NS103522)

  • Lin Tian

National Institutes of Health (DP2MH107056)

  • Lin Tian

Children's Tumor Foundation (Young Investigator Award 2016-01-00)

  • J Elliott Robinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal husbandry and experimental procedures involving animal subjects were conducted in compliance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and approved by the Institutional Animal Care and Use Committee (IACUC) and by the Office of Laboratory Animal Resources at the California Institute of Technology under IACUC protocol 1730.

Reviewing Editor

  1. Inna Slutsky, Tel Aviv University, Israel

Publication history

  1. Received: June 2, 2019
  2. Accepted: September 21, 2019
  3. Accepted Manuscript published: September 23, 2019 (version 1)
  4. Version of Record published: October 29, 2019 (version 2)
  5. Version of Record updated: November 8, 2019 (version 3)
  6. Version of Record updated: November 26, 2019 (version 4)
  7. Version of Record updated: January 20, 2020 (version 5)

Copyright

© 2019, Robinson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,202
    Page views
  • 635
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Timothy S Balmer et al.
    Research Article Updated

    Synapses of glutamatergic mossy fibers (MFs) onto cerebellar unipolar brush cells (UBCs) generate slow excitatory (ON) or inhibitory (OFF) postsynaptic responses dependent on the complement of glutamate receptors expressed on the UBC’s large dendritic brush. Using mouse brain slice recording and computational modeling of synaptic transmission, we found that substantial glutamate is maintained in the UBC synaptic cleft, sufficient to modify spontaneous firing in OFF UBCs and tonically desensitize AMPARs of ON UBCs. The source of this ambient glutamate was spontaneous, spike-independent exocytosis from the MF terminal, and its level was dependent on activity of glutamate transporters EAAT1–2. Increasing levels of ambient glutamate shifted the polarity of evoked synaptic responses in ON UBCs and altered the phase of responses to in vivo-like synaptic activity. Unlike classical fast synapses, receptors at the UBC synapse are virtually always exposed to a significant level of glutamate, which varies in a graded manner during transmission.

    1. Developmental Biology
    2. Neuroscience
    Hiroki Takechi et al.
    Research Article

    Transmembrane protein Golden goal (Gogo) interacts with atypical cadherin Flamingo to direct R8 photoreceptor axons in the Drosophila visual system. However, the precise mechanisms underlying Gogo regulation during columnar- and layer-specific R8 axon targeting are unknown. Our studies demonstrated that the insulin secreted from surface and cortex glia switches the phosphorylation status of Gogo, thereby regulating its two distinct functions. Non-phosphorylated Gogo mediates the initial recognition of the glial protrusion in the center of the medulla column, whereas phosphorylated Gogo suppresses radial filopodia extension by counteracting Flamingo to maintain a one axon to one column ratio. Later, Gogo expression ceases during the midpupal stage, thus allowing R8 filopodia to extend vertically into the M3 layer. These results demonstrate that the long- and short-range signaling between the glia and R8 axon growth cones regulates growth cone dynamics in a stepwise manner, and thus shape the entire organization of the visual system.