1. Neuroscience
Download icon

Optical dopamine monitoring with dLight1 reveals mesolimbic phenotypes in a mouse model of neurofibromatosis type 1

  1. J Elliott Robinson
  2. Gerard M Coughlin
  3. Acacia M Hori
  4. Jounhong Ryan Cho
  5. Elisha D Mackey
  6. Zeynep Turan
  7. Tommaso Patriarchi
  8. Lin Tian
  9. Viviana Gradinaru  Is a corresponding author
  1. California Institute of Technology, United States
  2. University of California, Davis, United States
Research Article
  • Cited 7
  • Views 5,540
  • Annotations
Cite this article as: eLife 2019;8:e48983 doi: 10.7554/eLife.48983

Abstract

Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder whose neurodevelopmental symptoms include impaired executive function, attention, and spatial learning that could be due to perturbed mesolimbic dopaminergic circuitry. However, these circuits have never been directly assayed in vivo. We employed the genetically encoded optical dopamine sensor dLight1 to monitor dopaminergic neurotransmission in the ventral striatum of NF1 mice during motivated behavior. Additionally, we developed novel systemic AAV vectors to facilitate morphological reconstruction of dopaminergic populations in cleared tissue. We found that NF1 mice exhibit reduced spontaneous dopaminergic neurotransmission that was associated with excitation/inhibition imbalance in the ventral tegmental area and abnormal neuronal morphology. NF1 mice also had more robust dopaminergic and behavioral responses to salient visual stimuli, which were stimulus-dependent, independent of learning, and rescued by optogenetic inhibition of non-dopaminergic neurons in the VTA. Overall, these studies provide a first in vivo characterization of dopaminergic circuit function in the context of NF1 and reveal novel pathophysiological mechanisms.

Data availability

Viral vector plasmids used in this study are available on Addgene at http://www.addgene.org/Viviana_Gradinaru/. Codes used for fiber photometry signal extraction and analysis are available at https://github.com/GradinaruLab/dLight1. Source data is available at www.doi.org/10.7303/syn18904024.

The following data sets were generated

Article and author information

Author details

  1. J Elliott Robinson

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9417-3938
  2. Gerard M Coughlin

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Acacia M Hori

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jounhong Ryan Cho

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Elisha D Mackey

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zeynep Turan

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tommaso Patriarchi

    Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lin Tian

    Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7012-6926
  9. Viviana Gradinaru

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    viviana@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5868-348X

Funding

National Institutes of Health (IDP20D017782-01)

  • Viviana Gradinaru

National Science and Engineering Research Council of Canada (Postgraduate Scholarship-Doctoral)

  • Gerard M Coughlin

National Institutes of Health (PECASE)

  • Viviana Gradinaru

National Institutes of Health (RF1MH117069)

  • Viviana Gradinaru

National Science Foundation (1707316)

  • Viviana Gradinaru

Heritage Medical Research Institute

  • Viviana Gradinaru

Tianqiao and Chrissy Chen Institute for Neuroscience

  • Viviana Gradinaru

National Institutes of Health (U01NS103522)

  • Lin Tian

National Institutes of Health (DP2MH107056)

  • Lin Tian

Children's Tumor Foundation (Young Investigator Award 2016-01-00)

  • J Elliott Robinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal husbandry and experimental procedures involving animal subjects were conducted in compliance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and approved by the Institutional Animal Care and Use Committee (IACUC) and by the Office of Laboratory Animal Resources at the California Institute of Technology under IACUC protocol 1730.

Reviewing Editor

  1. Inna Slutsky, Tel Aviv University, Israel

Publication history

  1. Received: June 2, 2019
  2. Accepted: September 21, 2019
  3. Accepted Manuscript published: September 23, 2019 (version 1)
  4. Version of Record published: October 29, 2019 (version 2)
  5. Version of Record updated: November 8, 2019 (version 3)
  6. Version of Record updated: November 26, 2019 (version 4)
  7. Version of Record updated: January 20, 2020 (version 5)

Copyright

© 2019, Robinson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,540
    Page views
  • 713
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Katherine B LeClair et al.
    Research Article

    Social hierarchy formation is strongly evolutionarily conserved. Across species, rank within social hierarchy has large effects on health and behavior. To investigate the relationship between social rank and stress susceptibility, we exposed ranked male and female mice to social and non-social stressors and manipulated social hierarchy position. We found that rank predicts same sex social stress outcomes: dominance in males and females confers resilience while subordination confers susceptibility. Pre-existing rank does not predict non-social stress outcomes in females and weakly does so in males, but rank emerging under stress conditions reveals social interaction deficits in male and female subordinates. Both history of winning and rank of cage mates affect stress susceptibility in males: rising to the top rank through high mobility confers resilience and mice that lose dominance lose stress resilience, though gaining dominance over a subordinate animal does not confer resilience. Overall, we have demonstrated a relationship between social status and stress susceptibility, particularly when taking into account individual history of winning and the overall hierarchy landscape in male and female mice.

    1. Cell Biology
    2. Neuroscience
    Zhong-Jiao Jiang et al.
    Research Article

    TRPM7 contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in CNS neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmission from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.