From plasmodesma geometry to effective symplasmic permeability through biophysical modelling

  1. Eva E Deinum  Is a corresponding author
  2. Bela M Mulder
  3. Yoselin Benitez Alfonso
  1. Wageningen University, Netherlands
  2. AMOLF, Netherlands
  3. University of Leeds, United Kingdom

Abstract

Regulation of molecular transport via intercellular channels called plasmodesmata (PDs) is important for both coordinating developmental and environmental responses among neighbouring cells, and isolating (groups of) cells to execute distinct programs. Cell-to-cell mobility of fluorescent molecules and PD dimensions (measured from electron micrographs) are both used as methods to predict PD transport capacity (i.e., effective symplasmic permeability), but often yield very different values. Here, we build a theoretical bridge between both experimental approaches by calculating the effective symplasmic permeability from a geometrical description of individual PDs and considering the flow towards them. We find that a dilated central region has the strongest impact in thick cell walls and that clustering of PDs into pit fields strongly reduces predicted permeabilities. Moreover, our open source multi-level model allows to predict PD dimensions matching measured permeabilities and add a functional interpretation to structural differences observed between PDs in different cell walls.

Data availability

PDinsight can be downloaded from GitHub: https://github.com/eedeinum/PDinsight. Documentation on the use of PDinsight.py is included as an appendix to the manuscript with additional information at the head of the example parameter file. More extensive documentation is included with PDinsight on GitHub. PDinsight also has a citable DOI through Zenodo: 10.5281/zenodo.3536704. The PDinsight parameter files used for this manuscript are included as Source Code 1.

Article and author information

Author details

  1. Eva E Deinum

    Mathematical and Statistical Methods, Wageningen University, Wageningen, Netherlands
    For correspondence
    eva.deinum@wur.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8564-200X
  2. Bela M Mulder

    Living Matter Department, AMOLF, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Yoselin Benitez Alfonso

    Centre for Plant Science, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Molecular Biology Organization (ASTF 105 - 2012)

  • Eva E Deinum

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

  • Bela M Mulder

Engineering and Physical Sciences Research Council (EF/M027740/1)

  • Yoselin Benitez Alfonso

Leverhulme Trust (RPG-2016-13)

  • Yoselin Benitez Alfonso

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique C Bergmann, Stanford University, United States

Version history

  1. Received: June 3, 2019
  2. Accepted: November 16, 2019
  3. Accepted Manuscript published: November 22, 2019 (version 1)
  4. Accepted Manuscript updated: November 25, 2019 (version 2)
  5. Version of Record published: January 31, 2020 (version 3)

Copyright

© 2019, Deinum et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,966
    Page views
  • 319
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eva E Deinum
  2. Bela M Mulder
  3. Yoselin Benitez Alfonso
(2019)
From plasmodesma geometry to effective symplasmic permeability through biophysical modelling
eLife 8:e49000.
https://doi.org/10.7554/eLife.49000

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Heledd Davies, Hugo Belda ... Moritz Treeck
    Tools and Resources

    Reverse genetics is key to understanding protein function, but the mechanistic connection between a gene of interest and the observed phenotype is not always clear. Here we describe the use of proximity labeling using TurboID and site-specific quantification of biotinylated peptides to measure changes to the local protein environment of selected targets upon perturbation. We apply this technique, which we call PerTurboID, to understand how the P. falciparum exported kinase, FIKK4.1, regulates the function of the major virulence factor of the malaria causing parasite, PfEMP1. We generated independent TurboID fusions of 2 proteins that are predicted substrates of FIKK4.1 in a FIKK4.1 conditional KO parasite line. Comparing the abundance of site-specific biotinylated peptides between wildtype and kinase deletion lines reveals the differential accessibility of proteins to biotinylation, indicating changes to localization, protein-protein interactions, or protein structure which are mediated by FIKK4.1 activity. We further show that FIKK4.1 is likely the only FIKK kinase that controls surface levels of PfEMP1, but not other surface antigens, on the infected red blood cell under standard culture conditions. We believe PerTurboID is broadly applicable to study the impact of genetic or environmental perturbation on a selected cellular niche.

    1. Cell Biology
    Bo Wang, Zheyong Liang ... Peijun Liu
    Research Article

    The primary cilium plays important roles in regulating cell differentiation, signal transduction, and tissue organization. Dysfunction of the primary cilium can lead to ciliopathies and cancer. The formation and organization of the primary cilium are highly associated with cell polarity proteins, such as the apical polarity protein CRB3. However, the molecular mechanisms by which CRB3 regulates ciliogenesis and the location of CRB3 remain unknown. Here, we show that CRB3, as a navigator, regulates vesicle trafficking in γ-tubulin ring complex (γTuRC) assembly during ciliogenesis and cilium-related Hh and Wnt signaling pathways in tumorigenesis. Crb3 knockout mice display severe defects of the primary cilium in the mammary ductal lumen and renal tubule, while mammary epithelial-specific Crb3 knockout mice exhibit the promotion of ductal epithelial hyperplasia and tumorigenesis. CRB3 is essential for lumen formation and ciliary assembly in the mammary epithelium. We demonstrate that CRB3 localizes to the basal body and that CRB3 trafficking is mediated by Rab11-positive endosomes. Significantly, CRB3 interacts with Rab11 to navigate GCP6/Rab11 trafficking vesicles to CEP290, resulting in intact γTuRC assembly. In addition, CRB3-depleted cells are unresponsive to the activation of the Hh signaling pathway, while CRB3 regulates the Wnt signaling pathway. Therefore, our studies reveal the molecular mechanisms by which CRB3 recognizes Rab11-positive endosomes to facilitate ciliogenesis and regulates cilium-related signaling pathways in tumorigenesis.