Deep-learning based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells

  1. Moosung Lee
  2. Young-Ho Lee
  3. Jinyeop Song
  4. Geon Kim
  5. YoungJu Jo
  6. HyunSeok Min
  7. Chan Hyuk Kim  Is a corresponding author
  8. YongKeun Park  Is a corresponding author
  1. Korea Advanced Institute of Science and Technology, Republic of Korea
  2. Tomocube Inc, Republic of Korea

Abstract

The immunological synapse (IS) is a cell-cell junction between a T cell and a professional antigen-presenting cell. Since the IS formation is a critical step for the initiation of an antigen-specific immune response, various live-cell imaging techniques, most of which rely on fluorescence microscopy, have been used to study the dynamics of IS. However, the inherent limitations associated with the fluorescence-based imaging, such as photo-bleaching and photo-toxicity, prevent the long-term assessment of dynamic changes of IS with high frequency. Here, we propose and experimentally validate a label-free, volumetric, and automated assessment method for IS dynamics using a combinational approach of optical diffraction tomography and deep learning-based segmentation. The proposed method enables an automatic and quantitative spatiotemporal analysis of IS kinetics of morphological and biochemical parameters associated with IS dynamics, providing a new option for immunological research.

Data availability

We have provided pre-processing and post-processing codes, and training and validation datasets used in Figure 3-Video 1 (https://osf.io/9w32p/). Also, the Unet architecture code is available in https://github.com/JinyeopSong/190124_CART-Segmentation-best.

The following data sets were generated

Article and author information

Author details

  1. Moosung Lee

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    Moosung Lee, Mr. Moosung Lee has financial interests in Tomocube Inc., a company that commercializes optical diffraction tomography and quantitative phase-imaging instruments, and is one of the sponsors of the work..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2826-5401
  2. Young-Ho Lee

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    Young-Ho Lee, Dr. Y.H. Lee is an employee of Curocell Inc.
  3. Jinyeop Song

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  4. Geon Kim

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  5. YoungJu Jo

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  6. HyunSeok Min

    Tomocube Inc, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  7. Chan Hyuk Kim

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    For correspondence
    kimchanhyuk@kaist.ac.kr
    Competing interests
    Chan Hyuk Kim, Prof. C. H. K. is a co-founder and shareholder of Curocell inc...
  8. YongKeun Park

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    For correspondence
    yk.park@kaist.ac.kr
    Competing interests
    YongKeun Park, Prof. Park has financial interests in Tomocube Inc., a company that commercializes optical diffraction tomography and quantitative phase-imaging instruments, and is one of the sponsors of the work.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0528-6661

Funding

National Research Foundation of Korea (2017M3C1A3013923)

  • Moosung Lee
  • Jinyeop Song
  • Geon Kim
  • YongKeun Park

National Research Foundation of Korea (2015R1A3A2066550)

  • Moosung Lee
  • Jinyeop Song
  • Geon Kim
  • YongKeun Park

National Research Foundation of Korea (2018K000396)

  • Moosung Lee
  • Jinyeop Song
  • Geon Kim
  • YongKeun Park

The Ministry of Science and ICT (2014M3A9D8032525)

  • Young-Ho Lee
  • Chan Hyuk Kim

The Ministry of Science and ICT (N11190028)

  • Young-Ho Lee
  • Chan Hyuk Kim

National Research Foundation of Korea (2019R1A2C1004129)

  • Young-Ho Lee
  • Chan Hyuk Kim

The funders had no role in study design, data collection, interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,341
    views
  • 898
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moosung Lee
  2. Young-Ho Lee
  3. Jinyeop Song
  4. Geon Kim
  5. YoungJu Jo
  6. HyunSeok Min
  7. Chan Hyuk Kim
  8. YongKeun Park
(2020)
Deep-learning based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells
eLife 9:e49023.
https://doi.org/10.7554/eLife.49023

Share this article

https://doi.org/10.7554/eLife.49023

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    David Trombley McSwiggen, Helen Liu ... Hilary P Beck
    Research Article

    The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.

    1. Cell Biology
    Hongqian Chen, Hui-Qing Fang ... Peng Liu
    Tools and Resources

    The FSH-FSHR pathway has been considered an essential regulator in reproductive development and fertility. But there has been emerging evidence of FSHR expression in extragonadal organs. This poses new questions and long-term debates regarding the physiological role of the FSH-FSHR, and underscores the need for reliable, in vivo analysis of FSHR expression in animal models. However, conventional methods have proven insufficient for examining FSHR expression due to several limitations. To address this challenge, we developed Fshr-ZsGreen reporter mice under the control of Fshr endogenous promoter using CRISPR-Cas9. With this novel genetic tool, we provide a reliable readout of Fshr expression at single-cell resolution level in vivo and in real time. Reporter animals were also subjected to additional analyses,to define the accurate expression profile of FSHR in gonadal and extragonadal organs/tissues. Our compelling results not only demonstrated Fshr expression in intragonadal tissues but also, strikingly, unveiled notably increased expression in Leydig cells, osteoblast lineage cells, endothelial cells in vascular structures, and epithelial cells in bronchi of the lung and renal tubes. The genetic decoding of the widespread pattern of Fshr expression highlights its physiological relevance beyond reproduction and fertility, and opens new avenues for therapeutic options for age-related disorders of the bones, lungs, kidneys, and hearts, among other tissues. Exploiting the power of the Fshr knockin reporter animals, this report provides the first comprehensive genetic record of the spatial distribution of FSHR expression, correcting a long-term misconception about Fshr expression and offering prospects for extensive exploration of FSH-FSHR biology.