Deep-learning based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells

  1. Moosung Lee
  2. Young-Ho Lee
  3. Jinyeop Song
  4. Geon Kim
  5. YoungJu Jo
  6. HyunSeok Min
  7. Chan Hyuk Kim  Is a corresponding author
  8. YongKeun Park  Is a corresponding author
  1. Korea Advanced Institute of Science and Technology, Republic of Korea
  2. Tomocube Inc, Republic of Korea

Abstract

The immunological synapse (IS) is a cell-cell junction between a T cell and a professional antigen-presenting cell. Since the IS formation is a critical step for the initiation of an antigen-specific immune response, various live-cell imaging techniques, most of which rely on fluorescence microscopy, have been used to study the dynamics of IS. However, the inherent limitations associated with the fluorescence-based imaging, such as photo-bleaching and photo-toxicity, prevent the long-term assessment of dynamic changes of IS with high frequency. Here, we propose and experimentally validate a label-free, volumetric, and automated assessment method for IS dynamics using a combinational approach of optical diffraction tomography and deep learning-based segmentation. The proposed method enables an automatic and quantitative spatiotemporal analysis of IS kinetics of morphological and biochemical parameters associated with IS dynamics, providing a new option for immunological research.

Data availability

We have provided pre-processing and post-processing codes, and training and validation datasets used in Figure 3-Video 1 (https://osf.io/9w32p/). Also, the Unet architecture code is available in https://github.com/JinyeopSong/190124_CART-Segmentation-best.

The following data sets were generated

Article and author information

Author details

  1. Moosung Lee

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    Moosung Lee, Mr. Moosung Lee has financial interests in Tomocube Inc., a company that commercializes optical diffraction tomography and quantitative phase-imaging instruments, and is one of the sponsors of the work..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2826-5401
  2. Young-Ho Lee

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    Young-Ho Lee, Dr. Y.H. Lee is an employee of Curocell Inc.
  3. Jinyeop Song

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  4. Geon Kim

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  5. YoungJu Jo

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  6. HyunSeok Min

    Tomocube Inc, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  7. Chan Hyuk Kim

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    For correspondence
    kimchanhyuk@kaist.ac.kr
    Competing interests
    Chan Hyuk Kim, Prof. C. H. K. is a co-founder and shareholder of Curocell inc...
  8. YongKeun Park

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    For correspondence
    yk.park@kaist.ac.kr
    Competing interests
    YongKeun Park, Prof. Park has financial interests in Tomocube Inc., a company that commercializes optical diffraction tomography and quantitative phase-imaging instruments, and is one of the sponsors of the work.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0528-6661

Funding

National Research Foundation of Korea (2017M3C1A3013923)

  • Moosung Lee
  • Jinyeop Song
  • Geon Kim
  • YongKeun Park

National Research Foundation of Korea (2015R1A3A2066550)

  • Moosung Lee
  • Jinyeop Song
  • Geon Kim
  • YongKeun Park

National Research Foundation of Korea (2018K000396)

  • Moosung Lee
  • Jinyeop Song
  • Geon Kim
  • YongKeun Park

The Ministry of Science and ICT (2014M3A9D8032525)

  • Young-Ho Lee
  • Chan Hyuk Kim

The Ministry of Science and ICT (N11190028)

  • Young-Ho Lee
  • Chan Hyuk Kim

National Research Foundation of Korea (2019R1A2C1004129)

  • Young-Ho Lee
  • Chan Hyuk Kim

The funders had no role in study design, data collection, interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,555
    views
  • 922
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moosung Lee
  2. Young-Ho Lee
  3. Jinyeop Song
  4. Geon Kim
  5. YoungJu Jo
  6. HyunSeok Min
  7. Chan Hyuk Kim
  8. YongKeun Park
(2020)
Deep-learning based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells
eLife 9:e49023.
https://doi.org/10.7554/eLife.49023

Share this article

https://doi.org/10.7554/eLife.49023

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Artem K Velichko, Nadezhda V Petrova ... Omar L Kantidze
    Research Article

    We investigated the role of the nucleolar protein Treacle in organizing and regulating the nucleolus in human cells. Our results support Treacle’s ability to form liquid-like phase condensates through electrostatic interactions among molecules. The formation of these biomolecular condensates is crucial for segregating nucleolar fibrillar centers from the dense fibrillar component and ensuring high levels of ribosomal RNA (rRNA) gene transcription and accurate rRNA processing. Both the central and C-terminal domains of Treacle are required to form liquid-like condensates. The initiation of phase separation is attributed to the C-terminal domain. The central domain is characterized by repeated stretches of alternatively charged amino acid residues and is vital for condensate stability. Overexpression of mutant forms of Treacle that cannot form liquid-like phase condensates compromises the assembly of fibrillar centers, suppressing rRNA gene transcription and disrupting rRNA processing. These mutant forms also fail to recruit DNA topoisomerase II binding protein 1 (TOPBP1), suppressing the DNA damage response in the nucleolus.

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article Updated

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of preciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures preciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the preciliary vesicle recruitment, but not for other steps of cilium formation (Kanie et al., 2025). The lack of a membrane-binding motif in CEP89 suggests that it may indirectly recruit preciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and the centriole-associated vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similar to CEP89 knockouts, preciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the preciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the preciliary vesicles.