Telophase correction refines division orientation in stratified epithelia

  1. Kendall J Lough
  2. Kevin M Byrd
  3. Carlos P Descovich
  4. Danielle C Spitzer
  5. Abby J Bergman
  6. Gerard MJ Beaudoin
  7. Louis F Reichardt
  8. Scott E Williams  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States
  2. University of California, San Francisco, United States

Abstract

During organogenesis, precise control of spindle orientation balances proliferation and differentiation. In the developing murine epidermis, planar and perpendicular divisions yield symmetric and asymmetric fate outcomes, respectively. Classically, division axis specification involves centrosome migration and spindle rotation, events occurring early in mitosis. Here, we identify a novel orientation mechanism which corrects erroneous anaphase orientations during telophase. The directionality of reorientation correlates with the maintenance or loss of basal contact by the apical daughter. While the scaffolding protein LGN is known to determine initial spindle positioning, we show that LGN also functions during telophase to reorient oblique divisions toward perpendicular. The fidelity of telophase correction also relies on the tension-sensitive adherens junction proteins vinculin, α-E-catenin, and afadin. Failure of this corrective mechanism impacts tissue architecture, as persistent oblique divisions induce precocious, sustained differentiation. The division orientation plasticity provided by telophase correction may enable progenitors to adapt to local tissue needs.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures.

Article and author information

Author details

  1. Kendall J Lough

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kevin M Byrd

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5565-0524
  3. Carlos P Descovich

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6366-5195
  4. Danielle C Spitzer

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4827-1857
  5. Abby J Bergman

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gerard MJ Beaudoin

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Louis F Reichardt

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Scott E Williams

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    scott_williams@med.unc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9975-7334

Funding

National Institute of Dental and Craniofacial Research (Predoctoral Fellowship F31 DE026956)

  • Kendall J Lough

National Institute of Dental and Craniofacial Research (Career Development Award K08 DE026537)

  • Kevin M Byrd

Sidney Kimmel Foundation for Cancer Research (Scholar Award SKF-15-165)

  • Scott E Williams

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were housed in an AAALAC-accredited (#329; June 2017), USDA registered (55-R-0004), NIH welfare-assured (D16-00256 (A3410-01)) animal facility. All procedures were performed under IACUC-approved animal protocols (19-155).

Copyright

© 2019, Lough et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,138
    views
  • 363
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kendall J Lough
  2. Kevin M Byrd
  3. Carlos P Descovich
  4. Danielle C Spitzer
  5. Abby J Bergman
  6. Gerard MJ Beaudoin
  7. Louis F Reichardt
  8. Scott E Williams
(2019)
Telophase correction refines division orientation in stratified epithelia
eLife 8:e49249.
https://doi.org/10.7554/eLife.49249

Share this article

https://doi.org/10.7554/eLife.49249