Kinetics of cytokine receptor trafficking determine signaling and functional selectivity

  1. Jonathan Martinez-Fabregas
  2. Stephan Wilmes
  3. Luopin Wang
  4. Maximillian Hafer
  5. Elizabeth Pohler
  6. Juliane Lokau
  7. Christoph Garbers
  8. Adeline Cozzani
  9. Jacob Piehler
  10. Majid Kazemian  Is a corresponding author
  11. Suman Mitra  Is a corresponding author
  12. Ignacio Moraga Gonzalez  Is a corresponding author
  1. University of Dundee, United Kingdom
  2. Purdue University, United States
  3. University of Osnabrück, Germany
  4. Otto-von-Guericke-University Magdeburg, Germany
  5. Université de Lille, France

Abstract

Cytokines activate signaling via assembly of cell surface receptors, but it is unclear whether modulation of cytokine-receptor binding parameters can modify biological outcomes. We have engineered IL-6 variants with different affinities to gp130 to investigate how cytokine receptor binding dwell-times influence functional selectivity. Engineered IL-6 variants showed a range of signaling amplitudes and induced biased signaling, with changes in receptor binding dwell-times affecting more profoundly STAT1 than STAT3 phosphorylation. We show that this differential signaling arises from defective translocation of ligand-gp130 complexes to the endosomal compartment and competitive STAT1/STAT3 binding to phospho-tyrosines in gp130, and results in unique patterns of STAT3 binding to chromatin. This leads to a graded gene expression response and differences in ex vivo differentiation of Th17, Th1 and Treg cells. These results provide a molecular understanding of signaling biased by cytokine receptors, and demonstrate that manipulation of signaling thresholds is a useful strategy to decouple cytokine functional pleiotropy.

Data availability

Sequencing data have been deposited in GEO under accession number code: GSE130810

The following data sets were generated

Article and author information

Author details

  1. Jonathan Martinez-Fabregas

    Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5809-065X
  2. Stephan Wilmes

    Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Luopin Wang

    Department of Biochemistry, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Maximillian Hafer

    Department of Biology, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0853-2637
  5. Elizabeth Pohler

    Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Juliane Lokau

    Department of Pathology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2573-7282
  7. Christoph Garbers

    Department of Pathology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Adeline Cozzani

    Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Jacob Piehler

    Department of Biology, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Majid Kazemian

    Department of Biochemistry, Purdue University, West Lafayette, United States
    For correspondence
    kazemian@purdue.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7080-8820
  11. Suman Mitra

    Université de Lille, Lille, France
    For correspondence
    suman.mitra@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
  12. Ignacio Moraga Gonzalez

    Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    For correspondence
    IMoragagonzalez@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9909-0701

Funding

Horizon 2020 Framework Programme (714680)

  • Ignacio Moraga Gonzalez

Horizon 2020 Framework Programme (714680)

  • Jonathan Martinez-Fabregas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Martinez-Fabregas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,786
    views
  • 715
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Martinez-Fabregas
  2. Stephan Wilmes
  3. Luopin Wang
  4. Maximillian Hafer
  5. Elizabeth Pohler
  6. Juliane Lokau
  7. Christoph Garbers
  8. Adeline Cozzani
  9. Jacob Piehler
  10. Majid Kazemian
  11. Suman Mitra
  12. Ignacio Moraga Gonzalez
(2019)
Kinetics of cytokine receptor trafficking determine signaling and functional selectivity
eLife 8:e49314.
https://doi.org/10.7554/eLife.49314

Share this article

https://doi.org/10.7554/eLife.49314

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Simei Go, Constantinos Demetriou ... Eric O Neill
    Research Article

    The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma (PDAC) prevents tumor control and strategies to restore anti-cancer immunity (i.e. by increasing CD8 T-cell activity) have had limited success. Here, we demonstrate how inducing localized physical damage using ionizing radiation (IR) unmasks the benefit of immunotherapy by increasing tissue-resident natural killer (trNK) cells that support CD8 T activity. Our data confirms that targeting mouse orthotopic PDAC tumors with IR together with CCR5 inhibition and PD1 blockade reduces E-cadherin positive tumor cells by recruiting a hypoactive NKG2D-ve NK population, phenotypically reminiscent of trNK cells, that supports CD8 T-cell involvement. We show an equivalent population in human single-cell RNA sequencing (scRNA-seq) PDAC cohorts that represents immunomodulatory trNK cells that could similarly support CD8 T-cell levels in a cDC1-dependent manner. Importantly, a trNK signature associates with survival in PDAC and other solid malignancies revealing a potential beneficial role for trNK in improving adaptive anti-tumor responses and supporting CCR5 inhibitor (CCR5i)/αPD1 and IR-induced damage as a novel therapeutic approach.

    1. Immunology and Inflammation
    Jasmine Rowell, Ching-In Lau ... Tessa Crompton
    Research Article

    Here, we sequenced rearranged TCRβ and TCRα chain sequences in CD4+CD8+ double positive (DP), CD4+CD8- single positive (SP4) and CD4-CD8+ (SP8) thymocyte populations from the foetus and young adult mouse. We found that life-stage had a greater impact on TCRβ and TCRα gene segment usage than cell-type. Foetal repertoires showed bias towards 3’TRAV and 5’TRAJ rearrangements in all populations, whereas adult repertoires used more 5’TRAV gene segments, suggesting that progressive TCRα rearrangements occur less frequently in foetal DP cells. When we synchronised young adult DP thymocyte differentiation by hydrocortisone treatment the new recovering DP thymocyte population showed more foetal-like 3’TRAV and 5’TRAJ gene segment usage. In foetus we identified less influence of MHC-restriction on α-chain and β-chain combinatorial VxJ usage and CDR1xCDR2 (V region) usage in SP compared to adult, indicating weaker impact of MHC-restriction on the foetal TCR repertoire. The foetal TCRβ repertoire was less diverse, less evenly distributed, with fewer non-template insertions, and all foetal populations contained more clonotypic expansions than adult. The differences between the foetal and adult thymus TCR repertoires are consistent with the foetal thymus producing αβT-cells with properties and functions that are distinct from adult T-cells: their repertoire is less governed by MHC-restriction, with preference for particular gene segment usage, less diverse with more clonotypic expansions, and more closely encoded by genomic sequence.