Dopamine neuron ensembles signal the content of sensory prediction errors

  1. Thomas Stalnaker  Is a corresponding author
  2. James D Howard
  3. Yuji K Takahashi
  4. Samuel J Gershman
  5. Thorsten Kahnt
  6. Geoffrey Schoenbaum  Is a corresponding author
  1. National Institute on Drug Abuse, National Institutes of Health, United States
  2. Northwestern University, United States
  3. Harvard University, United States

Abstract

Dopamine neurons respond to errors in predicting value-neutral sensory information. These data, combined with causal evidence that dopamine transients support sensory-based associative learning, suggest that the dopamine system signals a multidimensional prediction error. Yet such complexity is not evident in individual neuron or average neural activity. How then do downstream areas know what to learn in response to these signals? One possibility is that information about content is contained in the pattern of firing across many dopamine neurons. Consistent with this, here we show that the pattern of firing across a small group of dopamine neurons recorded in rats signals the identity of a mis-predicted sensory event. Further, this same information is reflected in the BOLD response elicited by sensory prediction errors in human midbrain. These data provide evidence that ensembles of dopamine neurons provide highly specific teaching signals, opening new possibilities for how this system might contribute to learning.

Data availability

The raw data that went into the analyses shown in Figures 1,2 and 3 are archived athttps://github.com/tastalnaker/dopamine_ensemble_analysis.git

Article and author information

Author details

  1. Thomas Stalnaker

    Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    For correspondence
    thomas.stalnaker@nih.gov
    Competing interests
    No competing interests declared.
  2. James D Howard

    Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9309-3773
  3. Yuji K Takahashi

    Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Samuel J Gershman

    Department of Psychology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6546-3298
  5. Thorsten Kahnt

    Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    Thorsten Kahnt, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3575-2670
  6. Geoffrey Schoenbaum

    Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    For correspondence
    geoffrey.schoenbaum@nih.gov
    Competing interests
    Geoffrey Schoenbaum, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8180-0701

Funding

National Institute on Drug Abuse (ZIA-DA000587)

  • Geoffrey Schoenbaum

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee protocols of the NIH. The protocol (#18-CNRB-108) was approved by the NIDA-IRP ACUC. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Human subjects: Subjects gave informed consent to participate in the experiment. The protocol (#STU00098371) and consent forms were approved by Northwestern University's Institutional Review Board.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,214
    views
  • 611
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas Stalnaker
  2. James D Howard
  3. Yuji K Takahashi
  4. Samuel J Gershman
  5. Thorsten Kahnt
  6. Geoffrey Schoenbaum
(2019)
Dopamine neuron ensembles signal the content of sensory prediction errors
eLife 8:e49315.
https://doi.org/10.7554/eLife.49315

Share this article

https://doi.org/10.7554/eLife.49315

Further reading

    1. Neuroscience
    Takashi Yamamoto, Kayoko Ueji ... Shinya Ugawa
    Research Article

    The concept of ‘kokumi’, which refers to an enhanced and more delicious flavor of food, has recently generated considerable interest in food science. However, kokumi has not been well studied in gustatory physiology, and the underlying neuroscientific mechanisms remain largely unexplored. Our previous research demonstrated that ornithine (L-ornithine), which is abundant in shijimi clams, enhanced taste preferences in mice. The present study aimed to build on these findings and investigate the mechanisms responsible for kokumi in rats. In two-bottle preference tests, the addition of ornithine, at a low concentration that did not increase the favorability of this substance alone, enhanced the animals’ preferences for umami, sweet, fatty, salty, and bitter solutions, with the intake of monosodium glutamate showing the most significant increase. Additionally, a mixture of umami and ornithine synergistically induced significant responses in the chorda tympani nerve, which transmits taste information to the brain from the anterior part of the tongue. The observed preference enhancement and increase in taste-nerve response were abolished by antagonists of the G-protein-coupled receptor family C group 6 subtype A (GPRC6A). Furthermore, immunohistochemical analysis indicated that GPRC6A was expressed in a subset of type II taste cells in rat fungiform papillae. These results provide new insights into flavor-enhancement mechanisms, confirming that ornithine is a kokumi substance and GPRC6A is a novel kokumi receptor.

    1. Evolutionary Biology
    2. Neuroscience
    Anastasia A Makarova, Nicholas J Chua ... Alexey A Polilov
    Research Article

    The structure of compound eyes in arthropods has been the subject of many studies, revealing important biological principles. Until recently, these studies were constrained by the two-dimensional nature of available ultrastructural data. By taking advantage of the novel three-dimensional ultrastructural dataset obtained using volume electron microscopy, we present the first cellular-level reconstruction of the whole compound eye of an insect, the miniaturized parasitoid wasp Megaphragma viggianii. The compound eye of the female M. viggianii consists of 29 ommatidia and contains 478 cells. Despite the almost anucleate brain, all cells of the compound eye contain nuclei. As in larger insects, the dorsal rim area of the eye in M. viggianii contains ommatidia that are believed to be specialized in polarized light detection as reflected in their corneal and retinal morphology. We report the presence of three ‘ectopic’ photoreceptors. Our results offer new insights into the miniaturization of compound eyes and scaling of sensory organs in general.