Kinetochores attached to microtubule-ends are stabilised by Astrin bound PP1 to ensure proper chromosome segregation

Abstract

Microtubules segregate chromosomes by attaching to macromolecular kinetochores. Only microtubule-end attached kinetochores can be pulled apart; how these end-on attachments are selectively recognised and stabilised is not known. Using the kinetochore and microtubule-associated protein, Astrin, as a molecular probe, we show that end-on attachments are rapidly stabilised by spatially-restricted delivery of PP1 near the C-terminus of Ndc80, a core kinetochore-microtubule linker. PP1 is delivered by the evolutionarily conserved tail of Astrin and this promotes Astrin's own enrichment creating a highly-responsive positive feedback, independent of biorientation. Abrogating Astrin:PP1-delivery disrupts attachment stability, which is not rescued by inhibiting Aurora-B, an attachment destabiliser, but is reversed by artificially tethering PP1 near the C-terminus of Ndc80. Constitutive Astrin:PP1-delivery disrupts chromosome congression and segregation, revealing a dynamic mechanism for stabilising attachments. Thus, Astrin-PP1 mediates a dynamic 'lock' that selectively and rapidly stabilises end-on attachments, independent of biorientation, and ensures proper chromosome segregation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Duccio Conti

    Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4009-5940
  2. Parveen Gul

    Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Asifa Islam

    Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. José M Martín-Durán

    Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Richard W Pickersgill

    Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Viji M Draviam

    Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
    For correspondence
    v.draviam@qmul.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8295-3689

Funding

Queen Mary University of London (SBC8DRA2)

  • Viji M Draviam

Biotechnology and Biological Sciences Research Council (R01003X/1)

  • Viji M Draviam

Cancer Research UK (C28598/A9787)

  • Viji M Draviam

Medical Research Council (MR/K50127X/1)

  • Duccio Conti

Islamic Development Bank

  • Parveen Gul

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Conti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.49325

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.