Decoding WW domain tandem-mediated target recognitions in tissue growth and cell polarity

  1. Zhijie Lin
  2. Zhou Yang
  3. Ruiling Xie
  4. Zeyang Ji
  5. Kunliang Guan
  6. Mingjie Zhang  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong
  2. University of California, San Diego, United States

Abstract

WW domain tandem-containing proteins such as KIBRA, YAP, and MAGI play critical roles in cell growth and polarity via binding to and positioning target proteins in specific subcellular regions. An immense disparity exists between promiscuity of WW domain-mediated target bindings and specific roles of WW domain proteins in cell growth regulation. Here, we discovered that WW domain tandems of KIBRA and MAGI, but not YAP, bind to specific target proteins with extremely high affinity and exquisite sequence specificity. Via systematic structural biology and biochemistry approaches, we decoded the target binding rules of WW domain tandems from cell growth regulatory proteins and uncovered a list of previously unknown WW tandem binding proteins including β-Dystroglycan, JCAD, and PTPN21. The WW tandem-mediated target recognition mechanisms elucidated here can guide functional studies of WW domain proteins in cell growth and polarity as well as in other cellular processes including neuronal synaptic signaling.

Data availability

The atomic coordinates of the WW tandem and target complex structures have been deposited to the Protein Data Bank under the accession codes of: 6J68 (KIBRA/LATS1), 6JJW (KIBRA/PTPN14), 6JJX (KBIRA/AMOT), 6JJY (KIBRA/β-DG), 6JJZ (MAGI2/Dendrin), 6JK0 (YAP-Linker-Dendrin), and 6JK1 (Dendrin-Linker-YAP).

The following data sets were generated

Article and author information

Author details

  1. Zhijie Lin

    Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  2. Zhou Yang

    Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  3. Ruiling Xie

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6086-8683
  4. Zeyang Ji

    Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  5. Kunliang Guan

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    Kunliang Guan, co-founder and has an equity interest in Vivace Therapeutics, Inc. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies.
  6. Mingjie Zhang

    Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    mzhang@ust.hk
    Competing interests
    Mingjie Zhang, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9404-0190

Funding

Asia Foundation for Cancer Research (AFCR17SC01)

  • Mingjie Zhang

National Institutes of Health (CA196878)

  • Kunliang Guan

Research Grants Council, University Grants Committee (AOE-M09-12)

  • Mingjie Zhang

Research Grants Council, University Grants Committee (C6004-17G)

  • Mingjie Zhang

National Institutes of Health (CA217642)

  • Kunliang Guan

National Institutes of Health (GM51586)

  • Kunliang Guan

National Institutes of Health (DEO15964)

  • Kunliang Guan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Lin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,143
    views
  • 500
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhijie Lin
  2. Zhou Yang
  3. Ruiling Xie
  4. Zeyang Ji
  5. Kunliang Guan
  6. Mingjie Zhang
(2019)
Decoding WW domain tandem-mediated target recognitions in tissue growth and cell polarity
eLife 8:e49439.
https://doi.org/10.7554/eLife.49439

Share this article

https://doi.org/10.7554/eLife.49439

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Andrew P Latham, Longchen Zhu ... Bin Zhang
    Research Article

    The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, that is, the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELPs). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Assmaa Elsheikh, Camden M Driggers ... Show-Ling Shyng
    Research Article

    Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.