The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating Drosha activity

  1. Tsui Han Loo
  2. Xiaoqian Ye
  3. Ruth Jinfen Chai
  4. Mitsuteru Ito
  5. Gisèle Bonne
  6. Anne C Ferguson-Smith
  7. Colin L Stewart  Is a corresponding author
  1. Institute of Medical Biology, Singapore
  2. University of Cambridge, United Kingdom
  3. INSERM UMRS 974, France

Abstract

Here we show that a major muscle specific isoform of the murine LINC complex protein SUN1 is required for efficient muscle regeneration. The nucleoplasmic domain of the isoform specifically binds to and inhibits Drosha, a key component of the microprocessor complex required for miRNA synthesis. Comparison of the miRNA profiles between wildtype and SUN1 null myotubes identified a cluster of miRNAs encoded by a non-translated retrotransposon-like 1 antisense (Rtl1as) transcript that are decreased in the WT myoblasts due to SUN1 inhibition of Drosha. One of these miRNAs miR-127 inhibits the translation of the Rtl1 sense transcript, that encodes the retrotransposon-like 1 protein (RTL1), which is also required for muscle regeneration and is expressed in regenerating/dystrophic muscle. The LINC complex may therefore regulate gene expression during muscle regeneration by controlling miRNA processing. This provides new insights into the molecular pathology underlying muscular dystrophies and how the LINC complex may regulate mechanosignaling.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures

Article and author information

Author details

  1. Tsui Han Loo

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaoqian Ye

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruth Jinfen Chai

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Mitsuteru Ito

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Gisèle Bonne

    Center of Research in Myology, INSERM UMRS 974, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Anne C Ferguson-Smith

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Colin L Stewart

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    For correspondence
    colin.stewart@imb.a-star.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4988-536X

Funding

National Medical Research Council (NMRC/TCR/006-NUHS/2013)

  • Colin L Stewart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were maintained at the A*STAR Biological Resource Centre facility in accordance with the guidelines of the IACUC committee. Experimental procedures were performed under the protocol number IUCAC #181326.

Copyright

© 2019, Loo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,261
    views
  • 255
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tsui Han Loo
  2. Xiaoqian Ye
  3. Ruth Jinfen Chai
  4. Mitsuteru Ito
  5. Gisèle Bonne
  6. Anne C Ferguson-Smith
  7. Colin L Stewart
(2019)
The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating Drosha activity
eLife 8:e49485.
https://doi.org/10.7554/eLife.49485

Share this article

https://doi.org/10.7554/eLife.49485

Further reading

    1. Cell Biology
    Inês Sequeira
    Insight

    A combination of intermittent fasting and administering Wnt3a proteins to a bone injury can rejuvenate bone repair in aged mice.

    1. Cell Biology
    2. Genetics and Genomics
    Jisun So, Olivia Strobel ... Hyun Cheol Roh
    Tools and Resources

    Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity. By integrating bulk nuclear RNA-seq from adipocyte nuclei of different sizes, we identify distinct adipocyte subpopulations categorized by size and functionality. These subpopulations follow two divergent trajectories, adaptive and pathological, with their prevalence varying by depot. Specifically, we identify a key molecular feature of dysfunctional hypertrophic adipocytes, a global shutdown in gene expression, along with elevated stress and inflammatory responses. Furthermore, our differential gene expression analysis reveals distinct contributions of adipocyte subpopulations to the overall pathophysiology of adipose tissue. Our study establishes a robust snRNA-seq method, providing novel insights into the biological processes involved in adipose tissue remodeling during obesity, with broader applicability across diverse biological systems.