The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating Drosha activity

  1. Tsui Han Loo
  2. Xiaoqian Ye
  3. Ruth Jinfen Chai
  4. Mitsuteru Ito
  5. Gisèle Bonne
  6. Anne C Ferguson-Smith
  7. Colin L Stewart  Is a corresponding author
  1. Institute of Medical Biology, Singapore
  2. University of Cambridge, United Kingdom
  3. INSERM UMRS 974, France

Abstract

Here we show that a major muscle specific isoform of the murine LINC complex protein SUN1 is required for efficient muscle regeneration. The nucleoplasmic domain of the isoform specifically binds to and inhibits Drosha, a key component of the microprocessor complex required for miRNA synthesis. Comparison of the miRNA profiles between wildtype and SUN1 null myotubes identified a cluster of miRNAs encoded by a non-translated retrotransposon-like 1 antisense (Rtl1as) transcript that are decreased in the WT myoblasts due to SUN1 inhibition of Drosha. One of these miRNAs miR-127 inhibits the translation of the Rtl1 sense transcript, that encodes the retrotransposon-like 1 protein (RTL1), which is also required for muscle regeneration and is expressed in regenerating/dystrophic muscle. The LINC complex may therefore regulate gene expression during muscle regeneration by controlling miRNA processing. This provides new insights into the molecular pathology underlying muscular dystrophies and how the LINC complex may regulate mechanosignaling.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures

Article and author information

Author details

  1. Tsui Han Loo

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaoqian Ye

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruth Jinfen Chai

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Mitsuteru Ito

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Gisèle Bonne

    Center of Research in Myology, INSERM UMRS 974, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Anne C Ferguson-Smith

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Colin L Stewart

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    For correspondence
    colin.stewart@imb.a-star.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4988-536X

Funding

National Medical Research Council (NMRC/TCR/006-NUHS/2013)

  • Colin L Stewart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were maintained at the A*STAR Biological Resource Centre facility in accordance with the guidelines of the IACUC committee. Experimental procedures were performed under the protocol number IUCAC #181326.

Copyright

© 2019, Loo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,270
    views
  • 256
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tsui Han Loo
  2. Xiaoqian Ye
  3. Ruth Jinfen Chai
  4. Mitsuteru Ito
  5. Gisèle Bonne
  6. Anne C Ferguson-Smith
  7. Colin L Stewart
(2019)
The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating Drosha activity
eLife 8:e49485.
https://doi.org/10.7554/eLife.49485

Share this article

https://doi.org/10.7554/eLife.49485

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.