Alpha/beta power decreases track the fidelity of stimulus-specific information

  1. Benjamin James Griffiths
  2. Stephen D Mayhew
  3. Karen J Mullinger
  4. João Jorge
  5. Ian Charest
  6. Maria Wimber
  7. Simon Hanslmayr  Is a corresponding author
  1. University of Birmingham, United Kingdom
  2. École Polytechnique Fédérale de Lausanne, Switzerland

Abstract

Massed synchronised neuronal firing is detrimental to information processing. When networks of task-irrelevant neurons fire in unison, they mask the signal generated by task-critical neurons. On a macroscopic level, such synchronisation can contribute to alpha/beta (8-30Hz) oscillations. Reducing the amplitude of these oscillations, therefore, may enhance information processing. Here, we test this hypothesis. Twenty-one participants completed an associative memory task while undergoing simultaneous EEG-fMRI recordings. Using representational similarity analysis, we quantified the amount of stimulus-specific information represented within the BOLD signal on every trial. When correlating this metric with concurrently-recorded alpha/beta power, we found a significant negative correlation which indicated that as post-stimulus alpha/beta power decreased, stimulus-specific information increased. Critically, we found this effect in three unique tasks: visual perception, auditory perception, and visual memory retrieval, indicating that this phenomenon transcends both stimulus modality and cognitive task. These results indicate that alpha/beta power decreases parametrically track the fidelity of both externally-presented and internally-generated stimulus-specific information represented within the cortex.

Data availability

The data has been made available on OpenNeuro (https://openneuro.org/datasets/ds002000/versions/1.0.0). Additionally, the data used to create the figures can be found on the Github repository with the associated scripts. (https://github.com/benjaminGriffiths/reinstatement_fidelity)

The following data sets were generated

Article and author information

Author details

  1. Benjamin James Griffiths

    School of Psychology, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Stephen D Mayhew

    School of Psychology, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Karen J Mullinger

    School of Psychology, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. João Jorge

    Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Ian Charest

    School of Psychology, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Wimber

    School of Psychology, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Simon Hanslmayr

    School of Psychology, University of Birmingham, Birmingham, United Kingdom
    For correspondence
    s.hanslmayr@bham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4448-2147

Funding

H2020 European Research Council (647954)

  • Simon Hanslmayr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Saskia Haegens, Columbia University College of Physicians and Surgeons, United States

Ethics

Human subjects: Participants provided informed consent to the experiment, the publication of the results, and the uploading of their anonymised data. Ethical approval was granted by the Research Ethics Committee at the University of Birmingham (ERN_15-0335B), complying with the Declaration of Helsinki.

Version history

  1. Received: June 21, 2019
  2. Accepted: November 28, 2019
  3. Accepted Manuscript published: November 29, 2019 (version 1)
  4. Version of Record published: December 10, 2019 (version 2)

Copyright

© 2019, Griffiths et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,299
    views
  • 497
    downloads
  • 105
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin James Griffiths
  2. Stephen D Mayhew
  3. Karen J Mullinger
  4. João Jorge
  5. Ian Charest
  6. Maria Wimber
  7. Simon Hanslmayr
(2019)
Alpha/beta power decreases track the fidelity of stimulus-specific information
eLife 8:e49562.
https://doi.org/10.7554/eLife.49562

Share this article

https://doi.org/10.7554/eLife.49562

Further reading

    1. Neuroscience
    Jack W Lindsey, Elias B Issa
    Research Article

    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity (‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.

    1. Neuroscience
    Zhaoran Zhang, Huijun Wang ... Kunlin Wei
    Research Article

    The sensorimotor system can recalibrate itself without our conscious awareness, a type of procedural learning whose computational mechanism remains undefined. Recent findings on implicit motor adaptation, such as over-learning from small perturbations and fast saturation for increasing perturbation size, challenge existing theories based on sensory errors. We argue that perceptual error, arising from the optimal combination of movement-related cues, is the primary driver of implicit adaptation. Central to our theory is the increasing sensory uncertainty of visual cues with increasing perturbations, which was validated through perceptual psychophysics (Experiment 1). Our theory predicts the learning dynamics of implicit adaptation across a spectrum of perturbation sizes on a trial-by-trial basis (Experiment 2). It explains proprioception changes and their relation to visual perturbation (Experiment 3). By modulating visual uncertainty in perturbation, we induced unique adaptation responses in line with our model predictions (Experiment 4). Overall, our perceptual error framework outperforms existing models based on sensory errors, suggesting that perceptual error in locating one’s effector, supported by Bayesian cue integration, underpins the sensorimotor system’s implicit adaptation.