Golgi compartments enable controlled biomolecular assembly using promiscuous enzymes

  1. Anjali Jaiman
  2. Mukund Thattai  Is a corresponding author
  1. National Centre for Biological Sciences, India

Abstract

The synthesis of eukaryotic glycans - branched sugar oligomers attached to cell-surface proteins and lipids - is organised like a factory assembly line. Specific enzymes within successive compartments of the Golgi apparatus determine where new monomer building blocks are linked to the growing oligomer. These enzymes act promiscuously and stochastically, causing microheterogeneity (molecule-to-molecule variability) in the final oligomer products. However, this variability is tightly controlled: a given eukaryotic protein type is typically associated with a narrow, specific glycan oligomer profile. Here we use ideas from the mathematical theory of self-assembly to enumerate the enzymatic causes of oligomer variability, and show how to eliminate each cause. We rigorously demonstrate that cells can specifically synthesize a larger repertoire of glycan oligomers by partitioning promiscuous enzymes across multiple Golgi compartments. This places limits on biomolecular assembly: glycan microheterogeneity becomes unavoidable when the number of compartments is limited, or enzymes are excessively promiscuous.

Data availability

Matlab source code has been provided for generating plots in Figure 2B.

Article and author information

Author details

  1. Anjali Jaiman

    Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Mukund Thattai

    Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, India
    For correspondence
    thattai@ncbs.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2558-6517

Funding

Simons Foundation (287975)

  • Mukund Thattai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patricia Bassereau, Institut Curie, France

Version history

  1. Received: June 21, 2019
  2. Accepted: June 28, 2020
  3. Accepted Manuscript published: June 29, 2020 (version 1)
  4. Version of Record published: July 14, 2020 (version 2)

Copyright

© 2020, Jaiman & Thattai

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,609
    Page views
  • 358
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anjali Jaiman
  2. Mukund Thattai
(2020)
Golgi compartments enable controlled biomolecular assembly using promiscuous enzymes
eLife 9:e49573.
https://doi.org/10.7554/eLife.49573

Share this article

https://doi.org/10.7554/eLife.49573

Further reading

    1. Cell Biology
    2. Neuroscience
    Rachel L Doser, Kaz M Knight ... Frederic J Hoerndli
    Research Article

    Our understanding of mitochondrial signaling in the nervous system has been limited by the technical challenge of analyzing mitochondrial function in vivo. In the transparent genetic model Caenorhabditis elegans, we were able to manipulate and measure mitochondrial ROS (reactive oxygen species) signaling of individual mitochondria as well as neuronal activity of single neurons in vivo. Using this approach, we provide evidence supporting a novel role for mitochondrial ROS signaling in dendrites of excitatory glutamatergic C. elegans interneurons. Specifically, we show that following neuronal activity, dendritic mitochondria take up calcium (Ca2+) via the mitochondrial Ca2+ uniporter MCU-1 that results in an upregulation of mitochondrial ROS production. We also observed that mitochondria are positioned in close proximity to synaptic clusters of GLR-1, the C. elegans ortholog of the AMPA subtype of glutamate receptors that mediate neuronal excitation. We show that synaptic recruitment of GLR-1 is upregulated when MCU-1 function is pharmacologically or genetically impaired but is downregulated by mitoROS signaling. Thus, signaling from postsynaptic mitochondria may regulate excitatory synapse function to maintain neuronal homeostasis by preventing excitotoxicity and energy depletion.

    1. Cell Biology
    2. Developmental Biology
    Houyu Zhang, Yan Li ... Meng Xie
    Research Article

    Perirenal adipose tissue (PRAT) is a unique visceral depot that contains a mixture of brown and white adipocytes. The origin and plasticity of such cellular heterogeneity remains unknown. Here, we combine single-nucleus RNA sequencing with genetic lineage tracing to reveal the existence of a distinct subpopulation of Ucp1-&Cidea+ adipocytes that arises from brown-to-white conversion during postnatal life in the periureter region of mouse PRAT. Cold exposure restores Ucp1 expression and a thermogenic phenotype in this subpopulation. These cells have a transcriptome that is distinct from subcutaneous beige adipocytes and may represent a unique type of cold-recruitable adipocytes. These results pave the way for studies of PRAT physiology and mechanisms controlling the plasticity of brown/white adipocyte phenotypes.