Golgi compartments enable controlled biomolecular assembly using promiscuous enzymes

  1. Anjali Jaiman
  2. Mukund Thattai  Is a corresponding author
  1. National Centre for Biological Sciences, India

Abstract

The synthesis of eukaryotic glycans - branched sugar oligomers attached to cell-surface proteins and lipids - is organised like a factory assembly line. Specific enzymes within successive compartments of the Golgi apparatus determine where new monomer building blocks are linked to the growing oligomer. These enzymes act promiscuously and stochastically, causing microheterogeneity (molecule-to-molecule variability) in the final oligomer products. However, this variability is tightly controlled: a given eukaryotic protein type is typically associated with a narrow, specific glycan oligomer profile. Here we use ideas from the mathematical theory of self-assembly to enumerate the enzymatic causes of oligomer variability, and show how to eliminate each cause. We rigorously demonstrate that cells can specifically synthesize a larger repertoire of glycan oligomers by partitioning promiscuous enzymes across multiple Golgi compartments. This places limits on biomolecular assembly: glycan microheterogeneity becomes unavoidable when the number of compartments is limited, or enzymes are excessively promiscuous.

Data availability

Matlab source code has been provided for generating plots in Figure 2B.

Article and author information

Author details

  1. Anjali Jaiman

    Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Mukund Thattai

    Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, India
    For correspondence
    thattai@ncbs.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2558-6517

Funding

Simons Foundation (287975)

  • Mukund Thattai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patricia Bassereau, Institut Curie, France

Version history

  1. Received: June 21, 2019
  2. Accepted: June 28, 2020
  3. Accepted Manuscript published: June 29, 2020 (version 1)
  4. Version of Record published: July 14, 2020 (version 2)

Copyright

© 2020, Jaiman & Thattai

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,615
    Page views
  • 359
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anjali Jaiman
  2. Mukund Thattai
(2020)
Golgi compartments enable controlled biomolecular assembly using promiscuous enzymes
eLife 9:e49573.
https://doi.org/10.7554/eLife.49573

Share this article

https://doi.org/10.7554/eLife.49573

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.