1. Neuroscience
Download icon

MouseBytes, an open-access high-throughput pipeline and database for rodent touchscreen-based cognitive assessment

Tools and Resources
  • Cited 10
  • Views 2,209
  • Annotations
Cite this article as: eLife 2019;8:e49630 doi: 10.7554/eLife.49630
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

Open Science has changed research by making data accessible and shareable, contributing to replicability to accelerate and disseminate knowledge. However, for rodent cognitive studies the availability of tools to share and disseminate data is scarce. Automated touchscreen-based tests enable systematic cognitive assessment with easily standardized outputs that can facilitate data dissemination. Here we present an integration of touchscreen cognitive testing with an open-access database public repository (mousebytes.ca), as well as a Web platform for knowledge dissemination (https://touchscreencognition.org). We complement these resources with the largest dataset of age-dependent high-level cognitive assessment of mouse models of Alzheimer's disease, expanding knowledge of affected cognitive domains from male and female mice of three mouse strains. We envision that these new platforms will enhance sharing of protocols, data availability and transparency, allowing meta-analysis and reuse of mouse cognitive data to increase the replicability/reproducibility of datasets.

Data availability

Automated quality control (QC) algorithm and the codes are available for free download and modification in GitHub https://github.com/srmemar/Mousebytes-An-open-access-high-throughput-pipeline-and-database-for-rodent-touchscreen-based-dataThe touchscreen processed data were deposited into an open-access application (http://www.mousebytes.ca/).

Article and author information

Author details

  1. Flavio H Beraldo

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  2. Daniel Palmer

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  3. Sara Memar

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  4. David I Wasserman

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  5. Wai-Jane V Lee

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  6. Shuai Liang

    Rotman Research Institute, Baycrest Hospital, Toronto, Canada
    Competing interests
    No competing interests declared.
  7. Samantha D Creighton

    Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
    Competing interests
    No competing interests declared.
  8. Benjamin Kolisnyk

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  9. Matthew F Cowan

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  10. Justin Mels

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  11. Talal S Masood

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  12. Chris Fodor

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  13. Mohammed A Al-Onaizi

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  14. Robert Bartha

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  15. Tom Gee

    Rotman Research Institute, Baycrest Hospital, Toronto, Canada
    Competing interests
    No competing interests declared.
  16. Lisa M Saksida

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    Lisa M Saksida, consults for Campden Instruments, Ltd.
  17. Timothy J Bussey

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    Timothy J Bussey, consults for Campden Instruments, Ltd.
  18. Stephen S Strother

    Rotman Research Institute, Baycrest Hospital, Toronto, Canada
    Competing interests
    No competing interests declared.
  19. Vania F Prado

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  20. Boyer D Winters

    Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
    For correspondence
    bwinters@uoguelph.ca
    Competing interests
    No competing interests declared.
  21. Marco A M Prado

    Robarts Research Institute, University of Western Ontario, London, Canada
    For correspondence
    mprado@robarts.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3028-5778

Funding

Weston Brain Institute

  • Robert Bartha
  • Stephen S Strother
  • Boyer D Winters
  • Marco A M Prado

Canada Open Neuroscience Platform

  • Sara Memar
  • Timothy J Bussey
  • Marco A M Prado

Mitacs

  • Daniel Palmer
  • Lisa M Saksida
  • Timothy J Bussey

CIFAR

  • Lisa M Saksida

Canadian Institutes of Health Research (MOP136930)

  • Marco A M Prado

Alzheimer's Society

  • Vania F Prado
  • Marco A M Prado

Canada First Research Excellence Fund (BrainsCAN)

  • Robert Bartha
  • Lisa M Saksida
  • Timothy J Bussey
  • Vania F Prado
  • Marco A M Prado

Brain Canada

  • Vania F Prado
  • Marco A M Prado

Canadian Institutes of Health Research (MOP126000)

  • Vania F Prado
  • Marco A M Prado

Canadian Institutes of Health Research (MOP89919)

  • Vania F Prado
  • Marco A M Prado

Natural Sciences and Engineering Research Council of Canada

  • Lisa M Saksida
  • Timothy J Bussey
  • Vania F Prado

Canada Research Chairs

  • Lisa M Saksida
  • Marco A M Prado

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Procedures were conducted in accordance with approved animal protocols at the University of Western Ontario (2016/104) and the University of Guelph (3481) following the Canadian Council of Animal Care and National Institutes of Health guidelines.

Reviewing Editor

  1. Andrew Holmes, NIH, United States

Publication history

  1. Received: June 24, 2019
  2. Accepted: December 11, 2019
  3. Accepted Manuscript published: December 11, 2019 (version 1)
  4. Version of Record published: December 27, 2019 (version 2)

Copyright

© 2019, Beraldo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,209
    Page views
  • 213
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Eun Ju Shin et al.
    Research Article Updated

    Studies in rats, monkeys, and humans have found action-value signals in multiple regions of the brain. These findings suggest that action-value signals encoded in these brain structures bias choices toward higher expected rewards. However, previous estimates of action-value signals might have been inflated by serial correlations in neural activity and also by activity related to other decision variables. Here, we applied several statistical tests based on permutation and surrogate data to analyze neural activity recorded from the striatum, frontal cortex, and hippocampus. The results show that previously identified action-value signals in these brain areas cannot be entirely accounted for by concurrent serial correlations in neural activity and action value. We also found that neural activity related to action value is intermixed with signals related to other decision variables. Our findings provide strong evidence for broadly distributed neural signals related to action value throughout the brain.

    1. Neuroscience
    Gonçalo Lopes et al.
    Research Article Updated

    Real-time rendering of closed-loop visual environments is important for next-generation understanding of brain function and behaviour, but is often prohibitively difficult for non-experts to implement and is limited to few laboratories worldwide. We developed BonVision as an easy-to-use open-source software for the display of virtual or augmented reality, as well as standard visual stimuli. BonVision has been tested on humans and mice, and is capable of supporting new experimental designs in other animal models of vision. As the architecture is based on the open-source Bonsai graphical programming language, BonVision benefits from native integration with experimental hardware. BonVision therefore enables easy implementation of closed-loop experiments, including real-time interaction with deep neural networks, and communication with behavioural and physiological measurement and manipulation devices.