Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles

  1. Jan Janouškovec  Is a corresponding author
  2. Gita G Paskerova
  3. Tatiana S Miroliubova
  4. Kirill V Mikhailov
  5. Thomas Birley
  6. Vladimir V Aleoshin
  7. Timur G Simdyanov
  1. University College London, United Kingdom
  2. Saint Petersburg State University, Russian Federation
  3. Lomonosov Moscow State University, Russian Federation

Abstract

The phylum Apicomplexa comprises human pathogens such as Plasmodium but are also an under-explored hotspot of evolutionary diversity central to understanding the origins of parasitism and non-photosynthetic plastids. We generated single-cell transcriptomes for all major apicomplexan groups lacking large-scale sequence data. Phylogenetic analysis reveals that apicomplexan-like parasites are polyphyletic and their similar morphologies emerged convergently at least three times. Gregarines and eugregarines are monophyletic, against most expectations, and rhytidocystids and Eleutheroschizon are sister lineages to medically important taxa. Although previously unrecognized, plastids in deep-branching apicomplexans are common, and they contain some of the most divergent and AT-rich genomes ever found. In eugregarines, however, plastids are either abnormally reduced or absent, thus increasing known plastid losses in eukaryotes from two to four. Environmental sequences of ten novel plastid lineages and structural innovations in plastid proteins confirm that plastids in apicomplexans and their relatives are widespread and share a common, photosynthetic origin.

Data availability

Sequence data have been deposited in NCBI under the Bioproject accessions PRJNA557242 and PRJNA556465. Sources of data for individual analyses are provided in Supplemental Tables S1 to S7.

The following data sets were generated

Article and author information

Author details

  1. Jan Janouškovec

    Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
    For correspondence
    janjan.cz@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6547-749X
  2. Gita G Paskerova

    Department of Invertebrate Zoology, Saint Petersburg State University, St Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1026-4216
  3. Tatiana S Miroliubova

    Department of Invertebrate Zoology, Saint Petersburg State University, St Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  4. Kirill V Mikhailov

    Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Birley

    Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Vladimir V Aleoshin

    Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3299-9950
  7. Timur G Simdyanov

    Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2478-9301

Funding

University College London (Excellence Research Fellowship)

  • Jan Janouškovec

Russian Foundation for Basic Research (18-04-00324)

  • Gita G Paskerova
  • Timur G Simdyanov

Russian Science Foundation (18-04-00123)

  • Vladimir V Aleoshin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Janouškovec et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,145
    views
  • 677
    downloads
  • 103
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan Janouškovec
  2. Gita G Paskerova
  3. Tatiana S Miroliubova
  4. Kirill V Mikhailov
  5. Thomas Birley
  6. Vladimir V Aleoshin
  7. Timur G Simdyanov
(2019)
Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles
eLife 8:e49662.
https://doi.org/10.7554/eLife.49662

Share this article

https://doi.org/10.7554/eLife.49662

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.