1. Evolutionary Biology
  2. Microbiology and Infectious Disease
Download icon

Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles

  1. Jan Janouškovec  Is a corresponding author
  2. Gita G Paskerova
  3. Tatiana S Miroliubova
  4. Kirill V Mikhailov
  5. Thomas Birley
  6. Vladimir V Aleoshin
  7. Timur G Simdyanov
  1. University College London, United Kingdom
  2. Saint Petersburg State University, Russian Federation
  3. Lomonosov Moscow State University, Russian Federation
Research Article
  • Cited 14
  • Views 3,006
  • Annotations
Cite this article as: eLife 2019;8:e49662 doi: 10.7554/eLife.49662

Abstract

The phylum Apicomplexa comprises human pathogens such as Plasmodium but are also an under-explored hotspot of evolutionary diversity central to understanding the origins of parasitism and non-photosynthetic plastids. We generated single-cell transcriptomes for all major apicomplexan groups lacking large-scale sequence data. Phylogenetic analysis reveals that apicomplexan-like parasites are polyphyletic and their similar morphologies emerged convergently at least three times. Gregarines and eugregarines are monophyletic, against most expectations, and rhytidocystids and Eleutheroschizon are sister lineages to medically important taxa. Although previously unrecognized, plastids in deep-branching apicomplexans are common, and they contain some of the most divergent and AT-rich genomes ever found. In eugregarines, however, plastids are either abnormally reduced or absent, thus increasing known plastid losses in eukaryotes from two to four. Environmental sequences of ten novel plastid lineages and structural innovations in plastid proteins confirm that plastids in apicomplexans and their relatives are widespread and share a common, photosynthetic origin.

Article and author information

Author details

  1. Jan Janouškovec

    Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
    For correspondence
    janjan.cz@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6547-749X
  2. Gita G Paskerova

    Department of Invertebrate Zoology, Saint Petersburg State University, St Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1026-4216
  3. Tatiana S Miroliubova

    Department of Invertebrate Zoology, Saint Petersburg State University, St Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  4. Kirill V Mikhailov

    Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Birley

    Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Vladimir V Aleoshin

    Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3299-9950
  7. Timur G Simdyanov

    Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2478-9301

Funding

University College London (Excellence Research Fellowship)

  • Jan Janouškovec

Russian Foundation for Basic Research (18-04-00324)

  • Gita G Paskerova
  • Timur G Simdyanov

Russian Science Foundation (18-04-00123)

  • Vladimir V Aleoshin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John McCutcheon, University of Montana

Publication history

  1. Received: June 25, 2019
  2. Accepted: August 14, 2019
  3. Accepted Manuscript published: August 16, 2019 (version 1)
  4. Version of Record published: September 9, 2019 (version 2)
  5. Version of Record updated: September 10, 2019 (version 3)

Copyright

© 2019, Janouškovec et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,006
    Page views
  • 442
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Thibaut Brunet et al.
    Research Article Updated

    Amoeboid cell types are fundamental to animal biology and broadly distributed across animal diversity, but their evolutionary origin is unclear. The closest living relatives of animals, the choanoflagellates, display a polarized cell architecture (with an apical flagellum encircled by microvilli) that resembles that of epithelial cells and suggests homology, but this architecture differs strikingly from the deformable phenotype of animal amoeboid cells, which instead evoke more distantly related eukaryotes, such as diverse amoebae. Here, we show that choanoflagellates subjected to confinement become amoeboid by retracting their flagella and activating myosin-based motility. This switch allows escape from confinement and is conserved across choanoflagellate diversity. The conservation of the amoeboid cell phenotype across animals and choanoflagellates, together with the conserved role of myosin, is consistent with homology of amoeboid motility in both lineages. We hypothesize that the differentiation between animal epithelial and crawling cells might have evolved from a stress-induced switch between flagellate and amoeboid forms in their single-celled ancestors.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Rémi Allio et al.
    Research Article

    In a context of ongoing biodiversity erosion, obtaining genomic resources from wildlife is essential for conservation. The thousands of yearly mammalian roadkill provide a useful source material for genomic surveys. To illustrate the potential of this underexploited resource, we used roadkill samples to study the genomic diversity of the bat-eared fox (Otocyon megalotis) and the aardwolf (Proteles cristatus), both having subspecies with similar disjunct distributions in Eastern and Southern Africa. First, we obtained reference genomes with high contiguity and gene completeness by combining Nanopore long reads and Illumina short reads. Then, we showed that the two subspecies of aardwolf might warrant species status (P. cristatus and P. septentrionalis) by comparing their genome-wide genetic differentiation to pairs of well-defined species across Carnivora with a new Genetic Differentiation index (GDi) based on only a few resequenced individuals. Finally, we obtained a genome-scale Carnivora phylogeny including the new aardwolf species.