RbFox1 up-regulation impairs BDNF-dependent hippocampal LTP by dysregulating TrkB isoform expression levels

  1. Francesco Tomassoni-Ardori
  2. Gianluca Fulgenzi
  3. Jodi Becker
  4. Colleen Barrick
  5. Mary Ellen Palko
  6. Skyler Kuhn
  7. Vishal Koparde
  8. Maggie Cam
  9. Sudhirkumar Yanpallewar
  10. Shalini Oberdoerffer
  11. Lino Tessarollo  Is a corresponding author
  1. National Cancer Institute, United States
  2. National Cancer Institute, National Institutes of Health, United States

Abstract

Brain Derived Neurotrophic Factor (BDNF) is a potent modulator of brain synaptic plasticity. Signaling defects caused by dysregulation of its NTrk2 (TrkB) kinase (TrkB.FL) and truncated receptors (TrkB.T1) have been linked to the pathophysiology of several neurological and neurodegenerative disorders. We found that upregulation of Rbfox1, an RNA binding protein associated with intellectual disability, epilepsy and autism, increases selectively hippocampal TrkB.T1 isoform expression. Physiologically, increased Rbfox1 impairs BDNF-dependent LTP which can be rescued by genetically restoring TrkB.T1 levels. RNA-seq analysis of hippocampi with upregulation of Rbfox1 in conjunction with the specific increase of TrkB.T1 isoform expression also shows that the genes affected by Rbfox1 gain of function are surprisingly different from those influenced by Rbfox1 deletion. These findings not only identify TrkB as a major target of Rbfox1 pathophysiology but also suggest that gain or loss of function of Rbfox1 regulate different genetic landscapes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Table 1 and 2.

The following previously published data sets were used

Article and author information

Author details

  1. Francesco Tomassoni-Ardori

    National Cancer Institute, National Institutes of Health, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gianluca Fulgenzi

    Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jodi Becker

    Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Colleen Barrick

    Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mary Ellen Palko

    Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Skyler Kuhn

    Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Vishal Koparde

    Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Maggie Cam

    Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sudhirkumar Yanpallewar

    Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shalini Oberdoerffer

    Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Lino Tessarollo

    Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
    For correspondence
    tessarol@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6420-772X

Funding

National Cancer Center (Intramural Research Program)

  • Maggie Cam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures followed the National Institutes of Health Guidelines for animal care and use, and were approved by the NCI-Frederick Animal Care and Use Committee.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,689
    views
  • 371
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesco Tomassoni-Ardori
  2. Gianluca Fulgenzi
  3. Jodi Becker
  4. Colleen Barrick
  5. Mary Ellen Palko
  6. Skyler Kuhn
  7. Vishal Koparde
  8. Maggie Cam
  9. Sudhirkumar Yanpallewar
  10. Shalini Oberdoerffer
  11. Lino Tessarollo
(2019)
RbFox1 up-regulation impairs BDNF-dependent hippocampal LTP by dysregulating TrkB isoform expression levels
eLife 8:e49673.
https://doi.org/10.7554/eLife.49673

Share this article

https://doi.org/10.7554/eLife.49673

Further reading

    1. Neuroscience
    Xingfeng Shao, Qinyang Shou ... Danny JJ Wang
    Research Article

    The blood-brain barrier (BBB) plays a pivotal role in protecting the central nervous system (CNS), and shielding it from potential harmful entities. A natural decline of BBB function with aging has been reported in both animal and human studies, which may contribute to cognitive decline and neurodegenerative disorders. Limited data also suggest that being female may be associated with protective effects on BBB function. Here, we investigated age and sex-dependent trajectories of perfusion and BBB water exchange rate (kw) across the lifespan in 186 cognitively normal participants spanning the ages of 8–92 years old, using a non-invasive diffusion-prepared pseudo-continuous arterial spin labeling (DP-pCASL) MRI technique. We found that the pattern of BBB kw decline with aging varies across brain regions. Moreover, results from our DP-pCASL technique revealed a remarkable decline in BBB kw beginning in the early 60 s, which was more pronounced in males. In addition, we observed sex differences in parietal and temporal regions. Our findings provide in vivo results demonstrating sex differences in the decline of BBB function with aging, which may serve as a foundation for future investigations into perfusion and BBB function in neurodegenerative and other brain disorders.

    1. Neuroscience
    Arndt-Lukas Klaassen, Björn Rasch
    Research Article

    Sleep associated memory consolidation and reactivation play an important role in language acquisition and learning of new words. However, it is unclear to what extent properties of word learning difficulty impact sleep associated memory reactivation. To address this gap, we investigated in 22 young healthy adults the effectiveness of auditory targeted memory reactivation (TMR) during non-rapid eye movement sleep of artificial words with easy and difficult to learn phonotactical properties. Here, we found that TMR of the easy words improved their overnight memory performance, whereas TMR of the difficult words had no effect. By comparing EEG activities after TMR presentations, we found an increase in slow wave density independent of word difficulty, whereas the spindle-band power nested during the slow wave up-states – as an assumed underlying activity of memory reactivation – was significantly higher in the easy/effective compared to the difficult/ineffective condition. Our findings indicate that word learning difficulty by phonotactics impacts the effectiveness of TMR and further emphasize the critical role of prior encoding depth in sleep associated memory reactivation.