RbFox1 up-regulation impairs BDNF-dependent hippocampal LTP by dysregulating TrkB isoform expression levels

  1. Francesco Tomassoni-Ardori
  2. Gianluca Fulgenzi
  3. Jodi Becker
  4. Colleen Barrick
  5. Mary Ellen Palko
  6. Skyler Kuhn
  7. Vishal Koparde
  8. Maggie Cam
  9. Sudhirkumar Yanpallewar
  10. Shalini Oberdoerffer
  11. Lino Tessarollo  Is a corresponding author
  1. National Cancer Institute, United States
  2. National Cancer Institute, National Institutes of Health, United States

Abstract

Brain Derived Neurotrophic Factor (BDNF) is a potent modulator of brain synaptic plasticity. Signaling defects caused by dysregulation of its NTrk2 (TrkB) kinase (TrkB.FL) and truncated receptors (TrkB.T1) have been linked to the pathophysiology of several neurological and neurodegenerative disorders. We found that upregulation of Rbfox1, an RNA binding protein associated with intellectual disability, epilepsy and autism, increases selectively hippocampal TrkB.T1 isoform expression. Physiologically, increased Rbfox1 impairs BDNF-dependent LTP which can be rescued by genetically restoring TrkB.T1 levels. RNA-seq analysis of hippocampi with upregulation of Rbfox1 in conjunction with the specific increase of TrkB.T1 isoform expression also shows that the genes affected by Rbfox1 gain of function are surprisingly different from those influenced by Rbfox1 deletion. These findings not only identify TrkB as a major target of Rbfox1 pathophysiology but also suggest that gain or loss of function of Rbfox1 regulate different genetic landscapes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Table 1 and 2.

The following previously published data sets were used

Article and author information

Author details

  1. Francesco Tomassoni-Ardori

    National Cancer Institute, National Institutes of Health, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gianluca Fulgenzi

    Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jodi Becker

    Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Colleen Barrick

    Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mary Ellen Palko

    Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Skyler Kuhn

    Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Vishal Koparde

    Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Maggie Cam

    Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sudhirkumar Yanpallewar

    Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shalini Oberdoerffer

    Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Lino Tessarollo

    Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
    For correspondence
    tessarol@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6420-772X

Funding

National Cancer Center (Intramural Research Program)

  • Maggie Cam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Moses V Chao, New York University Langone Medical Center, United States

Ethics

Animal experimentation: All experimental procedures followed the National Institutes of Health Guidelines for animal care and use, and were approved by the NCI-Frederick Animal Care and Use Committee.

Version history

  1. Received: June 25, 2019
  2. Accepted: July 25, 2019
  3. Accepted Manuscript published: August 20, 2019 (version 1)
  4. Version of Record published: August 29, 2019 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,545
    Page views
  • 351
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesco Tomassoni-Ardori
  2. Gianluca Fulgenzi
  3. Jodi Becker
  4. Colleen Barrick
  5. Mary Ellen Palko
  6. Skyler Kuhn
  7. Vishal Koparde
  8. Maggie Cam
  9. Sudhirkumar Yanpallewar
  10. Shalini Oberdoerffer
  11. Lino Tessarollo
(2019)
RbFox1 up-regulation impairs BDNF-dependent hippocampal LTP by dysregulating TrkB isoform expression levels
eLife 8:e49673.
https://doi.org/10.7554/eLife.49673

Share this article

https://doi.org/10.7554/eLife.49673

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Cell Biology
    2. Neuroscience
    Zhenyong Wu, Grant F Kusick ... Shigeki Watanabe
    Research Article

    Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.