Ataxin-7 and Non-stop coordinate SCAR protein levels, subcellular localization, and actin cytoskeleton organization

Abstract

Atxn7, a subunit of SAGA chromatin remodeling complex, is subject to polyglutamine expansion at the amino terminus, causing spinocerebellar ataxia type 7 (SCA7), a progressive retinal and neurodegenerative disease. Within SAGA, the Atxn7 amino terminus anchors Non-stop, a deubiquitinase, to the complex. To understand the scope of Atxn7-dependent regulation of Non-stop, substrates of the deubiquitinase were sought. This revealed Non-stop, dissociated from Atxn7, interacts with Arp2/3 and WAVE regulatory complexes (WRC), which control actin cytoskeleton assembly. There, Non-stop countered polyubiquitination and proteasomal degradation of WRC subunit SCAR. Dependent on conserved WRC interacting receptor sequences (WIRS), Non-stop augmentation increased protein levels, and directed subcellular localization, of SCAR, decreasing cell area and number of protrusions. In vivo, heterozygous mutation of Atxn7 rescued haploinsufficiency of SCAR, but heterozygous mutation of SCAR did not significantly rescue knockdown of Atxn7.

Data availability

All proteomics data are available in the MassIVE repository. The permanent URL to the dataset is: ftp://massive.ucsd.edu/MSV000082625. The data is also accessible from: ProteomeXChange accession: PXD010462 http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD010462. MassIVE | Accession ID: MSV000082625 - ProteomeXchange | Accession ID: PXD010462

The following data sets were generated

Article and author information

Author details

  1. Veronica Cloud

    School of Biological Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ada Thapa

    School of Biological and Chemical Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pedro Morales-Sosa

    School of Biological and Chemical Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tayla Miller

    School of Biological and Chemical Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sara A Miller

    School of Biological Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel Holsapple

    School of Biological Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paige Gerhart

    School of Biological and Chemical Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Elaheh Momtahan

    School of Biological Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jarrid L Jack

    School of Biological Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Edgardo Leiva

    School of Biological Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sarah R Rapp

    School of Biological Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Lauren G Shelton

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Richard A Pierce

    School of Biological and Chemical Sciences, University of Missouri - Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Skylar Martin-Brown

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Laurence Florens

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Michael P Washburn

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7568-2585
  17. Ryan D Mohan

    School of Biological and Chemical Sciences, University of Missouri - Kansas City, Kansas City, United States
    For correspondence
    Mohanrd@umkc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7624-4605

Funding

National Institutes of Health (NIGMS grant 5R35GM118068)

  • Ryan D Mohan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Irwin Davidson, Institut de Génétique et de Biologie Moléculaire et Cellulaire, France

Version history

  1. Received: June 25, 2019
  2. Accepted: July 22, 2019
  3. Accepted Manuscript published: July 26, 2019 (version 1)
  4. Version of Record published: August 14, 2019 (version 2)

Copyright

© 2019, Cloud et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,172
    Page views
  • 258
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Veronica Cloud
  2. Ada Thapa
  3. Pedro Morales-Sosa
  4. Tayla Miller
  5. Sara A Miller
  6. Daniel Holsapple
  7. Paige Gerhart
  8. Elaheh Momtahan
  9. Jarrid L Jack
  10. Edgardo Leiva
  11. Sarah R Rapp
  12. Lauren G Shelton
  13. Richard A Pierce
  14. Skylar Martin-Brown
  15. Laurence Florens
  16. Michael P Washburn
  17. Ryan D Mohan
(2019)
Ataxin-7 and Non-stop coordinate SCAR protein levels, subcellular localization, and actin cytoskeleton organization
eLife 8:e49677.
https://doi.org/10.7554/eLife.49677

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Xarxa Quiroga, Nikhil Walani ... Pere Roca-Cusachs
    Research Article

    As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nano-scale topography. Here we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nano-scale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by I-BAR proteins, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios.

    1. Cell Biology
    Shuxian Li, Lingbing Li ... Xietong Wang
    Research Article

    Epidemiological studies have demonstrated that fine particulate matter (PM2.5) is associated with adverse obstetric and postnatal metabolic health outcomes, but the mechanism remains unclear. This study aimed to investigate the toxicological pathways by which PM2.5 damaged placental trophoblasts in vivo and in vitro. We confirmed that PM2.5 induced adverse gestational outcomes such as increased fetal mortality rates, decreased fetal number and weight, damaged placental structure, and increased apoptosis of trophoblasts. Additionally, PM2.5 induced dysfunction of the trophoblast cell line HTR8/SVneo, including in its proliferation, apoptosis, invasion, migration and angiogenesis. Moreover, we comprehensively analyzed the transcriptional landscape of HTR8/SVneo cells exposed to PM2.5 through RNA-Seq and observed that PM2.5 triggered overexpression of pathways involved in oxidative stress and mitochondrial apoptosis to damage HTR8/SVneo cell biological functions through CYP1A1. Mechanistically, PM2.5 stimulated KLF9, a transcription factor identified as binding to CYP1A1 promoter region, which further modulated the CYP1A1-driven downstream phenotypes. Together, this study demonstrated that the KLF9/CYP1A1 axis played a crucial role in the toxic progression of PM2.5 induced adverse pregnancy outcomes, suggesting adverse effects of environmental pollution on pregnant females and putative targeted therapeutic strategies.