Mitochondria supply ATP to the ER through a mechanism antagonized by cytosolic Ca2+

  1. Jing Yong
  2. Helmut Bischof
  3. Sandra Burgstaller
  4. Marina Siirin
  5. Anne Murphy
  6. Roland Malli
  7. Randal J Kaufman  Is a corresponding author
  1. SBP Medical Discovery Institute, United States
  2. Medical University of Graz, Austria
  3. University of California, San Diego, United States

Abstract

The endoplasmic reticulum (ER) imports ATP and uses energy from ATP hydrolysis for protein folding and trafficking. However, little is known about how this vital ATP transport occurs across the ER membrane. Here, using three commonly used cell lines (CHO, INS1 and HeLa), we report that ATP enters the ER lumen through a cytosolic Ca2+-antagonized mechanism, or CaATiER (Ca2+-Antagonized Transport into ER). Significantly, we show that mitochondria supply ATP to the ER and a SERCA-dependent Ca2+ gradient across the ER membrane is necessary for ATP transport into the ER, through SLC35B1/AXER. We propose that under physiological conditions, increases in cytosolic Ca2+ inhibit ATP import into the ER lumen to limit ER ATP consumption. Furthermore, the ATP level in the ER is readily depleted by oxidative phosphorylation (OxPhos) inhibitors and that ER protein misfolding increases ATP uptake from mitochondria into the ER. These findings suggest that ATP usage in the ER may increase mitochondrial OxPhos while decreasing glycolysis, i.e., an 'anti-Warburg' effect.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Requests for reagents should be directed to and will be fulfilled by the Lead Contact, Randal J. Kaufman (rkaufman@sbpdiscovery.org).

Article and author information

Author details

  1. Jing Yong

    Degenerative Diseases Program, SBP Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4970-408X
  2. Helmut Bischof

    Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandra Burgstaller

    Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Marina Siirin

    Degenerative Diseases Program, SBP Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne Murphy

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Roland Malli

    Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6327-8729
  7. Randal J Kaufman

    Degenerative Diseases Program, SBP Medical Discovery Institute, La Jolla, United States
    For correspondence
    rkaufman@sbpdiscovery.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4277-316X

Funding

National Heart, Lung, and Blood Institute (R01HL052173)

  • Randal J Kaufman

National Institute of Diabetes and Digestive and Kidney Diseases (P30DK063491)

  • Randal J Kaufman

National Institute of Diabetes and Digestive and Kidney Diseases (R37DK042394)

  • Randal J Kaufman

National Institute of Diabetes and Digestive and Kidney Diseases (R24DK110973)

  • Randal J Kaufman

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK103185)

  • Randal J Kaufman

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK113171)

  • Randal J Kaufman

National Institute on Aging (R01AG062190)

  • Randal J Kaufman

National Cancer Institute (R01CA198103)

  • Randal J Kaufman

National Cancer Institute (P30CA030199)

  • Randal J Kaufman

Austrian Science Fund (P28529-B27)

  • Roland Malli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Yong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,698
    views
  • 1,367
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jing Yong
  2. Helmut Bischof
  3. Sandra Burgstaller
  4. Marina Siirin
  5. Anne Murphy
  6. Roland Malli
  7. Randal J Kaufman
(2019)
Mitochondria supply ATP to the ER through a mechanism antagonized by cytosolic Ca2+
eLife 8:e49682.
https://doi.org/10.7554/eLife.49682

Share this article

https://doi.org/10.7554/eLife.49682

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.