Specific lid-base contacts in the 26S proteasome control the conformational switching required for substrate degradation

  1. Eric R Greene
  2. Ellen A Goodall
  3. Andres H de la Peña
  4. Mary E Matyskiela
  5. Gabriel C Lander
  6. Andreas Martin  Is a corresponding author
  1. University of California, Berkeley, United States
  2. The Scripps Research Institute, United States
  3. Celgene, United States

Abstract

The 26S proteasome is essential for proteostasis and the regulation of vital processes through ATP-dependent degradation of ubiquitinated substrates. To accomplish the multi-step degradation process, the proteasome's regulatory particle, consisting of lid and base subcomplexes, undergoes major conformational changes whose origin is unknown. Investigating the Saccharomyces cerevisiae proteasome, we found that peripheral interactions between the lid subunit Rpn5 and the base AAA+-ATPase ring are important for stabilizing the substrate-engagement-competent state and coordinating the conformational switch to processing states upon substrate engagement. Disrupting these interactions perturbs the conformational equilibrium and interferes with degradation initiation, while later processing steps remain unaffected. Similar defects in early degradation steps are observed when eliminating hydrolysis in the ATPase subunit Rpt6, whose nucleotide state seems to control proteasome conformational transitions. These results provide important insight into interaction networks that coordinate conformational changes with various stages of degradation, and how modulators of conformational equilibria may influence substrate turnover.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Eric R Greene

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Ellen A Goodall

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9876-5973
  3. Andres H de la Peña

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Mary E Matyskiela

    Structral and Chemical Biology, Celgene, San Diego, United States
    Competing interests
    No competing interests declared.
  5. Gabriel C Lander

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4921-1135
  6. Andreas Martin

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    a.martin@berkeley.edu
    Competing interests
    Andreas Martin, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0923-3284

Funding

Howard Hughes Medical Institute

  • Andreas Martin

National Institutes of Health (R01-GM094497)

  • Andreas Martin

National Institutes of Health (DP2EB020402)

  • Gabriel C Lander

American Cancer Society (132279-PF-18-189-01-DMC)

  • Andres H de la Peña

Pew Charitable Trusts

  • Gabriel C Lander

National Institutes of Health (S10OD021634)

  • Gabriel C Lander

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Greene et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,265
    views
  • 323
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric R Greene
  2. Ellen A Goodall
  3. Andres H de la Peña
  4. Mary E Matyskiela
  5. Gabriel C Lander
  6. Andreas Martin
(2019)
Specific lid-base contacts in the 26S proteasome control the conformational switching required for substrate degradation
eLife 8:e49806.
https://doi.org/10.7554/eLife.49806

Share this article

https://doi.org/10.7554/eLife.49806

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Assmaa Elsheikh, Camden M Driggers ... Show-Ling Shyng
    Research Article

    Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Andrew P Latham, Longchen Zhu ... Bin Zhang
    Research Article

    The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, that is, the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELPs). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.