Specific lid-base contacts in the 26S proteasome control the conformational switching required for substrate degradation

  1. Eric R Greene
  2. Ellen A Goodall
  3. Andres H de la Peña
  4. Mary E Matyskiela
  5. Gabriel C Lander
  6. Andreas Martin  Is a corresponding author
  1. University of California, Berkeley, United States
  2. The Scripps Research Institute, United States
  3. Celgene, United States

Abstract

The 26S proteasome is essential for proteostasis and the regulation of vital processes through ATP-dependent degradation of ubiquitinated substrates. To accomplish the multi-step degradation process, the proteasome's regulatory particle, consisting of lid and base subcomplexes, undergoes major conformational changes whose origin is unknown. Investigating the Saccharomyces cerevisiae proteasome, we found that peripheral interactions between the lid subunit Rpn5 and the base AAA+-ATPase ring are important for stabilizing the substrate-engagement-competent state and coordinating the conformational switch to processing states upon substrate engagement. Disrupting these interactions perturbs the conformational equilibrium and interferes with degradation initiation, while later processing steps remain unaffected. Similar defects in early degradation steps are observed when eliminating hydrolysis in the ATPase subunit Rpt6, whose nucleotide state seems to control proteasome conformational transitions. These results provide important insight into interaction networks that coordinate conformational changes with various stages of degradation, and how modulators of conformational equilibria may influence substrate turnover.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Eric R Greene

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Ellen A Goodall

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9876-5973
  3. Andres H de la Peña

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Mary E Matyskiela

    Structral and Chemical Biology, Celgene, San Diego, United States
    Competing interests
    No competing interests declared.
  5. Gabriel C Lander

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4921-1135
  6. Andreas Martin

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    a.martin@berkeley.edu
    Competing interests
    Andreas Martin, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0923-3284

Funding

Howard Hughes Medical Institute

  • Andreas Martin

National Institutes of Health (R01-GM094497)

  • Andreas Martin

National Institutes of Health (DP2EB020402)

  • Gabriel C Lander

American Cancer Society (132279-PF-18-189-01-DMC)

  • Andres H de la Peña

Pew Charitable Trusts

  • Gabriel C Lander

National Institutes of Health (S10OD021634)

  • Gabriel C Lander

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Greene et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,280
    views
  • 323
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric R Greene
  2. Ellen A Goodall
  3. Andres H de la Peña
  4. Mary E Matyskiela
  5. Gabriel C Lander
  6. Andreas Martin
(2019)
Specific lid-base contacts in the 26S proteasome control the conformational switching required for substrate degradation
eLife 8:e49806.
https://doi.org/10.7554/eLife.49806

Share this article

https://doi.org/10.7554/eLife.49806

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.