Reinforcement biases subsequent perceptual decisions when confidence is low: a widespread behavioral phenomenon

  1. Armin Lak  Is a corresponding author
  2. Emily Hueske
  3. Junya Hirokawa
  4. Paul Masset
  5. Torben Ott
  6. Anne E Urai
  7. Tobias H Donner
  8. Matteo Carandini
  9. Susumu Tonegawa
  10. Naoshige Uchida
  11. Adam Kepecs  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. MIT, United States
  3. Doshisha University, Japan
  4. Cold Spring Harbor Laboratory, United States
  5. University Medical Center Hamburg-Eppendorf, Germany
  6. University College London, United Kingdom
  7. Massachusetts Institute of Technology, United States
  8. Harvard University, United States

Abstract

Learning from successes and failures often improves the quality of subsequent decisions. Past outcomes, however, should not influence purely perceptual decisions after task acquisition is complete since these are designed so that only sensory evidence determines the correct choice. Yet, numerous studies report that outcomes can bias perceptual decisions, causing spurious changes in choice behavior without improving accuracy. Here we show that the effects of reward on perceptual decisions are principled: past rewards bias future choices specifically when previous choice was difficult and hence decision confidence was low. We identified this phenomenon in six datasets from four laboratories, across mice, rats, and humans, and sensory modalities from olfaction and audition to vision. We show that this choice-updating strategy can be explained by reinforcement learning models incorporating statistical decision confidence into their teaching signals. Thus, despite being suboptimal from the experimenter’s perspective, confidence-guided reinforcement learning optimizes behavior in uncertain, real-world situations.

Data availability

The data used in this study is available at http://dx.doi.org/10.6084/m9.figshare.4300043

The following previously published data sets were used

Article and author information

Author details

  1. Armin Lak

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    armin.lak@dpag.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1926-5458
  2. Emily Hueske

    Picower Institute, MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Junya Hirokawa

    Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1238-5713
  4. Paul Masset

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2001-7515
  5. Torben Ott

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  6. Anne E Urai

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5270-6513
  7. Tobias H Donner

    Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    Tobias H Donner, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7559-6019
  8. Matteo Carandini

    UCL Institute of Ophthalmology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4880-7682
  9. Susumu Tonegawa

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  10. Naoshige Uchida

    Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    Naoshige Uchida, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5755-9409
  11. Adam Kepecs

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    akepecs@wustl.edu
    Competing interests
    No competing interests declared.

Funding

Wellcome (106101)

  • Armin Lak

Wellcome (213465)

  • Armin Lak

National Institutes of Health (R01 MH110404)

  • Naoshige Uchida

National Institutes of Health (R01MH097061 and R01DA038209)

  • Naoshige Uchida

Wellcome (205093)

  • Matteo Carandini

Deutsche Forschungsgemeinschaft (DO 1240/2-1 and DO 1240/3-1)

  • Tobias H Donner

RIKEN-CBS

  • Emily Hueske
  • Susumu Tonegawa

JPB Foundation

  • Emily Hueske
  • Susumu Tonegawa

Howard Hughes Medical Institute

  • Emily Hueske
  • Susumu Tonegawa

German Academic Exchange Service

  • Anne E Urai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental procedures were approved by Institutional committees at Cold Spring Harbor Laboratory (for experiments on rats), MIT and Harvard University (for mice auditory experiments) and were in accordance with National Institute of Health standards (project ID: 18-14-11-08-1). Experiments on mice visual decisions were approved by the home Office of the United Kingdom (license 70/8021). Experiments in humans were approved by the ethics committee at the University of Amsterdam (project ID: 2014­-BC­-3376).

Human subjects: The ethics committee at the University of Amsterdam approved the study, and all observers gave their informed consent.project ID: 2014-BC-3376

Copyright

© 2020, Lak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,807
    views
  • 1,174
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Armin Lak
  2. Emily Hueske
  3. Junya Hirokawa
  4. Paul Masset
  5. Torben Ott
  6. Anne E Urai
  7. Tobias H Donner
  8. Matteo Carandini
  9. Susumu Tonegawa
  10. Naoshige Uchida
  11. Adam Kepecs
(2020)
Reinforcement biases subsequent perceptual decisions when confidence is low: a widespread behavioral phenomenon
eLife 9:e49834.
https://doi.org/10.7554/eLife.49834

Share this article

https://doi.org/10.7554/eLife.49834

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.