Intermittent hypoxia mediated by TSP1 dependent on STAT3 induces cardiac fibroblast activation and cardiac fibrosis

  1. Qiankun Bao  Is a corresponding author
  2. Bangying Zhang
  3. Ya Suo
  4. Chen Liu
  5. Qian Yang
  6. Kai Zhang
  7. Ming Yuan
  8. Meng Yuan
  9. Yue Zhang
  10. Guangping Li  Is a corresponding author
  1. The Second Hospital of Tianjin Medical University, China
  2. Peking University People's Hospital, China

Abstract

Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), known to be independently associated with cardiovascular diseases. However, the effect of IH on cardiac fibrosis and molecular events involved in this process are unclear. Here, we tested IH in angiotensin II (Ang II)-induced cardiac fibrosis and signaling linked to fibroblast activation. IH triggered cardiac fibrosis and aggravated Ang II-induced cardiac dysfunction in mice. Plasma thrombospondin-1 (TSP1) content was upregulated in both IH-exposed mice and OSA patients. Moreover, both in vivo and in vitro results showed IH-induced cardiac fibroblast activation and increased TSP1 expression in cardiac fibroblasts. Mechanistically, phosphorylation of STAT3 at Tyr705 mediated the IH-induced TSP1 expression and fibroblast activation. Finally, STAT3 inhibitor S3I-201 or AAV9 carrying a periostin promoter driving the expression of shRNA targeting Stat3 significantly attenuated the synergistic effects of IH and Ang II on cardiac fibrosis in mice. This work suggests a potential therapeutic strategy for OSA-related fibrotic heart disease.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 to 6.

Article and author information

Author details

  1. Qiankun Bao

    Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
    For correspondence
    baoqiankun@tmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5221-2780
  2. Bangying Zhang

    Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ya Suo

    Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chen Liu

    Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7120-5626
  5. Qian Yang

    Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Kai Zhang

    Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ming Yuan

    Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Meng Yuan

    Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yue Zhang

    Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Guangping Li

    Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
    For correspondence
    tic_tjcardiol@126.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Natural Science Foundation of China (81800251)

  • Qiankun Bao

National Natural Science Foundation of China (81570304)

  • Guangping Li

National Natural Science Foundation of China (21800297)

  • Yue Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal procedures were approved and conducted in accordance with the Experimental Animal Administration Committee of Tianjin Medical University (Permit Number: SYXK 2011-0006; SYXK 2016-0012).

Human subjects: Ethical approval was obtained through the institutional ethical review board of Peking University People's Hospital (Permit Number: 2018PHB210-01). The study was conducted in accordance with the Declaration of Helsinki. Written informed consent was taken from all study participants.

Copyright

© 2020, Bao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,080
    views
  • 316
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qiankun Bao
  2. Bangying Zhang
  3. Ya Suo
  4. Chen Liu
  5. Qian Yang
  6. Kai Zhang
  7. Ming Yuan
  8. Meng Yuan
  9. Yue Zhang
  10. Guangping Li
(2020)
Intermittent hypoxia mediated by TSP1 dependent on STAT3 induces cardiac fibroblast activation and cardiac fibrosis
eLife 9:e49923.
https://doi.org/10.7554/eLife.49923

Share this article

https://doi.org/10.7554/eLife.49923

Further reading

    1. Cancer Biology
    2. Medicine
    Anastasia D Komarova, Snezhana D Sinyushkina ... Marina V Shirmanova
    Research Article

    Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients’ tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients’ colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients’ tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.

    1. Medicine
    Sindre Lee-Ødegård, Marit Hjorth ... Kåre Inge Birkeland
    Research Article

    Background:

    Physical activity has been associated with preventing the development of type 2 diabetes and atherosclerotic cardiovascular disease. However, our understanding of the precise molecular mechanisms underlying these effects remains incomplete and good biomarkers to objectively assess physical activity are lacking.

    Methods:

    We analyzed 3072 serum proteins in 26 men, normal weight or overweight, undergoing 12 weeks of a combined strength and endurance exercise intervention. We estimated insulin sensitivity with hyperinsulinemic euglycemic clamp, maximum oxygen uptake, muscle strength, and used MRI/MRS to evaluate body composition and organ fat depots. Muscle and subcutaneous adipose tissue biopsies were used for mRNA sequencing. Additional association analyses were performed in samples from up to 47,747 individuals in the UK Biobank, as well as using two-sample Mendelian randomization and mice models.

    Results:

    Following 12 weeks of exercise intervention, we observed significant changes in 283 serum proteins. Notably, 66 of these proteins were elevated in overweight men and positively associated with liver fat before the exercise regimen, but were normalized after exercise. Furthermore, for 19.7 and 12.1% of the exercise-responsive proteins, corresponding changes in mRNA expression levels in muscle and fat, respectively, were shown. The protein CD300LG displayed consistent alterations in blood, muscle, and fat. Serum CD300LG exhibited positive associations with insulin sensitivity, and to angiogenesis-related gene expression in both muscle and fat. Furthermore, serum CD300LG was positively associated with physical activity and negatively associated with glucose levels in the UK Biobank. In this sample, the association between serum CD300LG and physical activity was significantly stronger in men than in women. Mendelian randomization analysis suggested potential causal relationships between levels of serum CD300LG and fasting glucose, 2 hr glucose after an oral glucose tolerance test, and HbA1c. Additionally, Cd300lg responded to exercise in a mouse model, and we observed signs of impaired glucose tolerance in male, but not female, Cd300lg knockout mice.

    Conclusions:

    Our study identified several novel proteins in serum whose levels change in response to prolonged exercise and were significantly associated with body composition, liver fat, and glucose homeostasis. Serum CD300LG increased with physical activity and is a potential causal link to improved glucose levels. CD300LG may be a promising exercise biomarker and a therapeutic target in type 2 diabetes.

    Funding:

    South-Eastern Norway Regional Health Authority, Simon Fougners Fund, Diabetesforbundet, Johan Selmer Kvanes’ legat til forskning og bekjempelse av sukkersyke. The UK Biobank resource reference 53641. Australian National Health and Medical Research Council Investigator Grant (APP2017942). Australian Research Council Discovery Early Career Award (DE220101226). Research Council of Norway (Project grant: 325640 and Mobility grant: 287198). The Medical Student Research Program at the University of Oslo. Novo Nordisk Fonden Excellence Emerging Grant in Endocrinology and Metabolism 2023 (NNF23OC0082123).

    Clinical trial number:

    clinicaltrials.gov: NCT01803568.