Mechanisms underlying the response of mouse cortical networks to optogenetic manipulation

  1. Alexandre Mahrach
  2. Guang Chen
  3. Nuo Li
  4. Carl van Vreeswijk
  5. David Hansel  Is a corresponding author
  1. CNRS-UMR 8002, France
  2. Baylor College of Medicine, United States

Abstract

GABAergic Interneurons can be subdivided into three subclasses: parvalbumin positive (PV), somatostatin positive (SOM) and serotonin positive neurons. With principal cells (PCs) they form complex networks. We examine PCs and PV responses in mouse anterior lateral motor cortex (ALM) and barrel cortex (S1) upon PV photostimulation in vivo. In ALM layer 5 and S1, the PV response is paradoxical: photoexcitation reduces their activity. This is not the case in ALM layer 2/3. We combine analytical calculations and numerical simulations to investigate how these results constrain the architecture. Two-population models cannot explain the results. Four-population networks with V1-like architecture account for the data in ALM layer 2/3 and layer 5. Our data in S1 can be explained if SOM neurons receive inputs only from PCs and PV neurons. In both four-population models, the paradoxical effect implies not too strong recurrent excitation. It is not evidence for stabilization by inhibition.

Data availability

Electrophysiology data and code used are available at Github (https://github.com/Amahrach/Paper4pop).

Article and author information

Author details

  1. Alexandre Mahrach

    Integrative Neuroscience and Cognition Center, CNRS-UMR 8002, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Guang Chen

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nuo Li

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Carl van Vreeswijk

    Integrative Neuroscience and Cognition Center, CNRS-UMR 8002, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. David Hansel

    Integrative Neuroscience and Cognition Center, CNRS-UMR 8002, Paris, France
    For correspondence
    david.hansel@parisdescartes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1352-6592

Funding

Agence Nationale de la Recherche (14-NEUC-0001-01)

  • Carl van Vreeswijk

Agence Nationale de la Recherche (13-BSV4-0014-02)

  • David Hansel

Agence Nationale de la Recherche (09-SYSC-002-01)

  • David Hansel

Helen Hay Whitney Foundation

  • Nuo Li

Robert and Janice McNair Foundation

  • Nuo Li

Alfred P. Sloan Foundation

  • Nuo Li

National Institutes of Health (NS104781)

  • Nuo Li

Pew Charitable Trusts

  • Nuo Li

Simons Collaboration on the Global Brain (543005)

  • Nuo Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were in accordance with protocols approved by the Janelia Research Campus and Baylor College of Medicine Institutional Animal Care and Use Committee.

Copyright

© 2020, Mahrach et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,512
    views
  • 614
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandre Mahrach
  2. Guang Chen
  3. Nuo Li
  4. Carl van Vreeswijk
  5. David Hansel
(2020)
Mechanisms underlying the response of mouse cortical networks to optogenetic manipulation
eLife 9:e49967.
https://doi.org/10.7554/eLife.49967

Share this article

https://doi.org/10.7554/eLife.49967

Further reading

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.