NINscope, a versatile miniscope for multi-region circuit investigations

  1. Andres de Groot
  2. Bastijn JG van den Boom
  3. Romano M van Genderen
  4. Joris Coppens
  5. John van Veldhuijzen
  6. Joop Bos
  7. Hugo Hoedemaker
  8. Mario Negrello
  9. Ingo Willuhn
  10. Chris I De Zeeuw  Is a corresponding author
  11. Tycho M Hoogland  Is a corresponding author
  1. Netherlands Institute for Neuroscience, Netherlands
  2. TU Delft, Netherlands
  3. Erasmus Medical Center, Netherlands

Abstract

Miniaturized fluorescence microscopes (miniscopes) have been instrumental to monitor neural signals during unrestrained behavior and their open-source versions have made them affordable. Often, the footprint and weight of open-source miniscopes is sacrificed for added functionality. Here, we present NINscope: a light-weight miniscope with a small footprint that integrates a high-sensitivity image sensor, an inertial measurement unit and an LED driver for an external optogenetic probe. We use it to perform the first concurrent cellular resolution recordings from cerebellum and cerebral cortex in unrestrained mice, demonstrate its optogenetic stimulation capabilities to examine cerebello-cerebral or cortico-striatal connectivity, and replicate findings of action encoding in dorsal striatum. In combination with cross-platform control software, our miniscope is a versatile addition to the expanding toolbox of open-source miniscopes that will increase access to multi-region circuit investigations during unrestrained behavior.

Data availability

Hardware, firmware and software have been deposited at GitHub under an MIT license.

Article and author information

Author details

  1. Andres de Groot

    Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Bastijn JG van den Boom

    Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0853-3763
  3. Romano M van Genderen

    Faculty of Applied Sciences, TU Delft, Delft, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Joris Coppens

    Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. John van Veldhuijzen

    Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Joop Bos

    Mechatronics, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Hugo Hoedemaker

    Mechatronics, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Mario Negrello

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Ingo Willuhn

    Mechatronics, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6540-6894
  10. Chris I De Zeeuw

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    For correspondence
    c.dezeeuw@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5628-8187
  11. Tycho M Hoogland

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    For correspondence
    t.hoogland@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7444-9279

Funding

Koninklijke Nederlandse Akademie van Wetenschappen (240-840100)

  • Chris I De Zeeuw
  • Tycho M Hoogland

Topsector Life Sciences & Health (LSHM18001)

  • Tycho M Hoogland

H2020 European Research Council (ERC-2014-STG 638013)

  • Ingo Willuhn

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (2015/06367/ALW 864.14.010)

  • Ingo Willuhn

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (ALWOP.2015.076)

  • Chris I De Zeeuw
  • Tycho M Hoogland

H2020 European Research Council (ERC-adv ERC-POC)

  • Chris I De Zeeuw

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All performed experiments were licensed by the Dutch Competent Authority and approved by the local Animal Welfare Body, following the European guidelines for the care and use of laboratory animals Directive 2010/63/EU.

Copyright

© 2020, de Groot et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,423
    views
  • 1,211
    downloads
  • 122
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andres de Groot
  2. Bastijn JG van den Boom
  3. Romano M van Genderen
  4. Joris Coppens
  5. John van Veldhuijzen
  6. Joop Bos
  7. Hugo Hoedemaker
  8. Mario Negrello
  9. Ingo Willuhn
  10. Chris I De Zeeuw
  11. Tycho M Hoogland
(2020)
NINscope, a versatile miniscope for multi-region circuit investigations
eLife 9:e49987.
https://doi.org/10.7554/eLife.49987

Share this article

https://doi.org/10.7554/eLife.49987

Further reading

    1. Neuroscience
    Lenia Amaral, Xiaosha Wang ... Ella Striem-Amit
    Research Article

    Research on brain plasticity, particularly in the context of deafness, consistently emphasizes the reorganization of the auditory cortex. But to what extent do all individuals with deafness show the same level of reorganization? To address this question, we examined the individual differences in functional connectivity (FC) from the deprived auditory cortex. Our findings demonstrate remarkable differentiation between individuals deriving from the absence of shared auditory experiences, resulting in heightened FC variability among deaf individuals, compared to more consistent FC in the hearing group. Notably, connectivity to language regions becomes more diverse across individuals with deafness. This does not stem from delayed language acquisition; it is found in deaf native signers, who are exposed to natural language since birth. However, comparing FC diversity between deaf native signers and deaf delayed signers, who were deprived of language in early development, we show that language experience also impacts individual differences, although to a more moderate extent. Overall, our research points out the intricate interplay between brain plasticity and individual differences, shedding light on the diverse ways reorganization manifests among individuals. It joins findings of increased connectivity diversity in blindness and highlights the importance of considering individual differences in personalized rehabilitation for sensory loss.

    1. Computational and Systems Biology
    2. Neuroscience
    Gabriel Loewinger, Erjia Cui ... Francisco Pereira
    Tools and Resources

    Fiber photometry has become a popular technique to measure neural activity in vivo, but common analysis strategies can reduce the detection of effects because they condense within-trial signals into summary measures, and discard trial-level information by averaging across-trials. We propose a novel photometry statistical framework based on functional linear mixed modeling, which enables hypothesis testing of variable effects at every trial time-point, and uses trial-level signals without averaging. This makes it possible to compare the timing and magnitude of signals across conditions while accounting for between-animal differences. Our framework produces a series of plots that illustrate covariate effect estimates and statistical significance at each trial time-point. By exploiting signal autocorrelation, our methodology yields joint 95% confidence intervals that account for inspecting effects across the entire trial and improve the detection of event-related signal changes over common multiple comparisons correction strategies. We reanalyze data from a recent study proposing a theory for the role of mesolimbic dopamine in reward learning, and show the capability of our framework to reveal significant effects obscured by standard analysis approaches. For example, our method identifies two dopamine components with distinct temporal dynamics in response to reward delivery. In simulation experiments, our methodology yields improved statistical power over common analysis approaches. Finally, we provide an open-source package and analysis guide for applying our framework.