1. Computational and Systems Biology
  2. Neuroscience
Download icon

From single neurons to behavior in the jellyfish Aurelia aurita

  1. Fabian Pallasdies  Is a corresponding author
  2. Sven Goedeke
  3. Wilhelm Braun
  4. Raoul Memmesheimer  Is a corresponding author
  1. University of Bonn, Germany
Research Article
  • Cited 3
  • Views 4,290
  • Annotations
Cite this article as: eLife 2019;8:e50084 doi: 10.7554/eLife.50084

Abstract

Jellyfish nerve nets provide insight into the origins of nervous systems, as both their taxonomic position and their evolutionary age imply that jellyfish resemble some of the earliest neuron-bearing, actively-swimming animals. Here we develop the first neuronal network model for the nerve nets of jellyfish. Specifically, we focus on the moon jelly Aurelia aurita and the control of its energy-efficient swimming motion. The proposed single neuron model disentangles the contributions of different currents to a spike. The network model identifies factors ensuring non-pathological activity and suggests an optimization for the transmission of signals. After modeling the jellyfish's muscle system and its bell in a hydrodynamic environment, we explore the swimming elicited by neural activity. We find that different delays between nerve net activations lead to well-controlled, differently directed movements. Our model bridges the scales from single neurons to behavior, allowing for a comprehensive understanding of jellyfish neural control of locomotion.

Data availability

No experimental data sets were generated in this study. Simulation parameters for all figures can be found in the manuscript and its supplements.Hydrodynamics simulations were performed with the IB2D package by Nicholas A. Battista (https://github.com/nickabattista/ib2d).

Article and author information

Author details

  1. Fabian Pallasdies

    Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn, Bonn, Germany
    For correspondence
    fabianpallasdies@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5359-4699
  2. Sven Goedeke

    Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Wilhelm Braun

    Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9419-3311
  4. Raoul Memmesheimer

    Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn, Bonn, Germany
    For correspondence
    rm.memmesheimer@uni-bonn.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

The German Federal Ministry of Education and Research (01GQ1710)

  • Fabian Pallasdies
  • Sven Goedeke
  • Wilhelm Braun
  • Raoul Memmesheimer

SMARTSTART Joint Training Program of the Bernstein Network and the VolkswagenStiftung (SmartStart2)

  • Fabian Pallasdies

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Publication history

  1. Received: July 10, 2019
  2. Accepted: December 22, 2019
  3. Accepted Manuscript published: December 23, 2019 (version 1)
  4. Version of Record published: February 3, 2020 (version 2)
  5. Version of Record updated: May 27, 2020 (version 3)

Copyright

© 2019, Pallasdies et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,290
    Page views
  • 396
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Hongfei Ji et al.
    Research Article

    Neural circuits coordinate with muscles and sensory feedback to generate motor behaviors appropriate to an animal’s environment. In C. elegans, the mechanisms by which the motor circuit generates undulations and modulates them based on the environment are largely unclear. We quantitatively analyzed C. elegans locomotion during free movement and during transient optogenetic muscle inhibition. Undulatory movements were highly asymmetrical with respect to the duration of bending and unbending during each cycle. Phase response curves induced by brief optogenetic inhibition of head muscles showed gradual increases and rapid decreases as a function of phase at which the perturbation was applied. A relaxation oscillator model based on proprioceptive thresholds that switch the active muscle moment was developed and is shown to quantitatively agree with data from free movement, phase responses, and previous results for gait adaptation to mechanical loadings. Our results suggest a neuromuscular mechanism underlying C. elegans motor pattern generation within a compact circuit.

    1. Computational and Systems Biology
    Christopher P Mancuso et al.
    Research Article Updated

    Environmental disturbances have long been theorized to play a significant role in shaping the diversity and composition of ecosystems. However, an inability to specify the characteristics of a disturbance experimentally has produced an inconsistent picture of diversity-disturbance relationships (DDRs). Here, using a high-throughput programmable culture system, we subjected a soil-derived bacterial community to dilution disturbance profiles with different intensities (mean dilution rates), applied either constantly or with fluctuations of different frequencies. We observed an unexpected U-shaped relationship between community diversity and disturbance intensity in the absence of fluctuations. Adding fluctuations increased community diversity and erased the U-shape. All our results are well-captured by a Monod consumer resource model, which also explains how U-shaped DDRs emerge via a novel ‘niche flip’ mechanism. Broadly, our combined experimental and modeling framework demonstrates how distinct features of an environmental disturbance can interact in complex ways to govern ecosystem assembly and offers strategies for reshaping the composition of microbiomes.