The recovery of standing and locomotion after spinal cord injury does not require task-specific training

Abstract

After complete spinal cord injury, mammals, including mice, rats and cats, recover hindlimb locomotion with treadmill training. The premise is that sensory cues consistent with locomotion reorganize spinal sensorimotor circuits. Here, we show that hindlimb standing and locomotion recover after spinal transection in cats without task-specific training. Spinal-transected cats recovered full weight bearing standing and locomotion after five weeks of rhythmic manual stimulation of triceps surae muscles (non-specific training) and without any intervention. Moreover, cats modulated locomotor speed and performed split-belt locomotion six weeks after spinal transection, functions that were not trained or tested in the weeks prior. This indicates that spinal networks controlling standing and locomotion and their interactions with sensory feedback from the limbs remain largely intact after complete spinal cord injury. We conclude that standing and locomotor recovery is due to the return of neuronal excitability within spinal sensorimotor circuits that do not require task-specific activity-dependent plasticity.

Data availability

A source data file has been provided with the article.

Article and author information

Author details

  1. Jonathan Harnie

    Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam Doelman

    Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Emmanuelle de Vette

    Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Johannie Audet

    Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Etienne Desrochers

    Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathalie Gaudreault

    School of Rehabilitation, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Alain Frigon

    Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
    For correspondence
    Alain.Frigon@USherbrooke.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9259-2706

Funding

Canadian Institutes of Health Research (PJT-156296)

  • Alain Frigon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Animal Care Committee of the Université de Sherbrooke and were in accordance with policies and directives of the Canadian Council on Animal Care (Protocol 442-18). Twelve adult cats (> 1 year of age at time of experimentation), 5 males and 7 females, weighing between 3.6 kg and 4.7 kg were used in the present study. Our study followed the ARRIVE guidelines for animal studies (Kilkenny et al. 2010).

Copyright

© 2019, Harnie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,074
    views
  • 446
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Harnie
  2. Adam Doelman
  3. Emmanuelle de Vette
  4. Johannie Audet
  5. Etienne Desrochers
  6. Nathalie Gaudreault
  7. Alain Frigon
(2019)
The recovery of standing and locomotion after spinal cord injury does not require task-specific training
eLife 8:e50134.
https://doi.org/10.7554/eLife.50134

Share this article

https://doi.org/10.7554/eLife.50134

Further reading

    1. Neuroscience
    François Osiurak, Giovanni Federico ... Mathieu Lesourd
    Research Article

    Our propensity to materiality, which consists in using, making, creating, and passing on technologies, has enabled us to shape the physical world according to our ends. To explain this proclivity, scientists have calibrated their lens to either low-level skills such as motor cognition or high-level skills such as language or social cognition. Yet, little has been said about the intermediate-level cognitive processes that are directly involved in mastering this materiality, that is, technical cognition. We aim to focus on this intermediate level for providing new insights into the neurocognitive bases of human materiality. Here, we show that a technical-reasoning process might be specifically at work in physical problem-solving situations. We found via two distinct neuroimaging studies that the area PF (parietal F) within the left parietal lobe is central for this reasoning process in both tool-use and non-tool-use physical problem-solving and can work along with social-cognitive skills to resolve day-to-day interactions that combine social and physical constraints. Our results demonstrate the existence of a specific cognitive module in the human brain dedicated to materiality, which might be the supporting pillar allowing the accumulation of technical knowledge over generations. Intensifying research on technical cognition could nurture a comprehensive framework that has been missing in fields interested in how early and modern humans have been interacting with the physical world through technology, and how this interaction has shaped our history and culture.

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.