The recovery of standing and locomotion after spinal cord injury does not require task-specific training

Abstract

After complete spinal cord injury, mammals, including mice, rats and cats, recover hindlimb locomotion with treadmill training. The premise is that sensory cues consistent with locomotion reorganize spinal sensorimotor circuits. Here, we show that hindlimb standing and locomotion recover after spinal transection in cats without task-specific training. Spinal-transected cats recovered full weight bearing standing and locomotion after five weeks of rhythmic manual stimulation of triceps surae muscles (non-specific training) and without any intervention. Moreover, cats modulated locomotor speed and performed split-belt locomotion six weeks after spinal transection, functions that were not trained or tested in the weeks prior. This indicates that spinal networks controlling standing and locomotion and their interactions with sensory feedback from the limbs remain largely intact after complete spinal cord injury. We conclude that standing and locomotor recovery is due to the return of neuronal excitability within spinal sensorimotor circuits that do not require task-specific activity-dependent plasticity.

Data availability

A source data file has been provided with the article.

Article and author information

Author details

  1. Jonathan Harnie

    Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam Doelman

    Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Emmanuelle de Vette

    Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Johannie Audet

    Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Etienne Desrochers

    Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathalie Gaudreault

    School of Rehabilitation, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Alain Frigon

    Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
    For correspondence
    Alain.Frigon@USherbrooke.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9259-2706

Funding

Canadian Institutes of Health Research (PJT-156296)

  • Alain Frigon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Animal Care Committee of the Université de Sherbrooke and were in accordance with policies and directives of the Canadian Council on Animal Care (Protocol 442-18). Twelve adult cats (> 1 year of age at time of experimentation), 5 males and 7 females, weighing between 3.6 kg and 4.7 kg were used in the present study. Our study followed the ARRIVE guidelines for animal studies (Kilkenny et al. 2010).

Reviewing Editor

  1. Jan-Marino Ramirez, Seattle Children's Research Institute, United States

Publication history

  1. Received: July 11, 2019
  2. Accepted: December 8, 2019
  3. Accepted Manuscript published: December 11, 2019 (version 1)
  4. Version of Record published: December 20, 2019 (version 2)

Copyright

© 2019, Harnie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,348
    Page views
  • 311
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Harnie
  2. Adam Doelman
  3. Emmanuelle de Vette
  4. Johannie Audet
  5. Etienne Desrochers
  6. Nathalie Gaudreault
  7. Alain Frigon
(2019)
The recovery of standing and locomotion after spinal cord injury does not require task-specific training
eLife 8:e50134.
https://doi.org/10.7554/eLife.50134

Further reading

    1. Neuroscience
    Nikoloz Sirmpilatze et al.
    Research Article

    During deep anesthesia, the electroencephalographic (EEG) signal of the brain alternates between bursts of activity and periods of relative silence (suppressions). The origin of burst-suppression and its distribution across the brain remain matters of debate. In this work, we used functional magnetic resonance imaging (fMRI) to map the brain areas involved in anesthesia-induced burst-suppression across four mammalian species: humans, long-tailed macaques, common marmosets, and rats. At first, we determined the fMRI signatures of burst-suppression in human EEG-fMRI data. Applying this method to animal fMRI datasets, we found distinct burst-suppression signatures in all species. The burst-suppression maps revealed a marked inter-species difference: in rats, the entire neocortex engaged in burst-suppression, while in primates most sensory areas were excluded—predominantly the primary visual cortex. We anticipate that the identified species-specific fMRI signatures and whole-brain maps will guide future targeted studies investigating the cellular and molecular mechanisms of burst-suppression in unconscious states.

    1. Neuroscience
    Maria Ribeiro, Miguel Castelo-Branco
    Research Article

    In humans, ageing is characterized by decreased brain signal variability and increased behavioral variability. To understand how reduced brain variability segregates with increased behavioral variability, we investigated the association between reaction time variability, evoked brain responses and ongoing brain signal dynamics, in young (N=36) and older adults (N=39). We studied the electroencephalogram (EEG) and pupil size fluctuations to characterize the cortical and arousal responses elicited by a cued go/no-go task. Evoked responses were strongly modulated by slow (<2 Hz) fluctuations of the ongoing signals, which presented reduced power in the older participants. Although variability of the evoked responses was lower in the older participants, once we adjusted for the effect of the ongoing signal fluctuations, evoked responses were equally variable in both groups. Moreover, the modulation of the evoked responses caused by the ongoing signal fluctuations had no impact on reaction time, thereby explaining why although ongoing brain signal variability is decreased in older individuals, behavioral variability is not. Finally, we showed that adjusting for the effect of the ongoing signal was critical to unmask the link between neural responses and behavior as well as the link between task-related evoked EEG and pupil responses.