Maternally-regulated gastrulation as a source of variation contributing to cavefish forebrain evolution

  1. Jorge Torres-Paz  Is a corresponding author
  2. Julien Leclercq
  3. Sylvie Rétaux  Is a corresponding author
  1. CNRS, Université Paris Sud, Université Paris-Saclay, France

Abstract

Sequential developmental events, starting from the moment of fertilization, are crucial for the acquisition of animal body plan. Subtle modifications in such early events are likely to have major impacts in later morphogenesis, bringing along morphological diversification. Here, comparing the blind cave and the surface morphotypes of Astyanax mexicanus fish, we found heterochronies during gastrulation, producing organizer and axial mesoderm tissues with different properties, including differences in expression of dkk1b, that may have contributed to cavefish brain evolution. These variations observed during gastrulation depend fully on maternal factors. The developmental evolution of retinal morphogenesis and hypothalamic patterning are among those traits that retained significant maternal influence at larval stages. Transcriptomic analysis of fertilized eggs from both morphotypes and reciprocal F1 hybrids showed a strong and specific maternal signature. Our work strongly suggests that maternal effect genes and developmental heterochronies occurring during gastrulation have impacted morphological brain change during cavefish evolution.

Data availability

Raw sequencing data are available through the NCBI Sequence Reads Archive (SRA) under BioProject accession PRJNA545230

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jorge Torres-Paz

    Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
    For correspondence
    jorge.torres-paz@cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7277-6348
  2. Julien Leclercq

    Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sylvie Rétaux

    Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
    For correspondence
    retaux@inaf.cnrs-gif.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (blindtest)

  • Sylvie Rétaux

Fondation pour la Recherche Médicale (DEQ20150331745 RETAUX)

  • Sylvie Rétaux

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: Animals were treated according to the French and European regulationsfor handling of animals in research. SR's authorization for use of animals in research including Astyanax mexicanus is 91-116 and Paris Centre-Sud Ethic Committee authorization numbers are 2012-0052, -0053, and -0054.

Copyright

© 2019, Torres-Paz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jorge Torres-Paz
  2. Julien Leclercq
  3. Sylvie Rétaux
(2019)
Maternally-regulated gastrulation as a source of variation contributing to cavefish forebrain evolution
eLife 8:e50160.
https://doi.org/10.7554/eLife.50160

Share this article

https://doi.org/10.7554/eLife.50160

Further reading

    1. Developmental Biology
    Thomas A Bos, Elizaveta Polyakova ... Monique RM Jongbloed
    Research Article Updated

    Human autonomic neuronal cell models are emerging as tools for modeling diseases such as cardiac arrhythmias. In this systematic review, we compared 33 articles applying 14 different protocols to generate sympathetic neurons and 3 different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half showed evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models that include multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two-thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modeling.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.