Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel

  1. Yihe Huang
  2. Becca Roth
  3. Wei Lu  Is a corresponding author
  4. Juan Du  Is a corresponding author
  1. Van Andel Institute, United States

Abstract

TRPM2 is critically involved in diverse physiological processes including core temperature sensing, apoptosis, and immune response. TRPM2's activation by Ca2+ and ADP ribose (ADPR), an NAD+-metabolite produced under oxidative stress and neurodegenerative conditions, suggests a role in neurological disorders. We provide a central concept between triple-site ligand binding and the channel gating of human TRPM2. We show consecutive structural rearrangements and channel activation of TRPM2 induced by binding of ADPR in two indispensable locations, and the binding of Ca2+ in the transmembrane domain. The 8-Br-cADPR-an antagonist of cADPR-binds only to the MHR1/2 domain and inhibits TRPM2 by stabilizing the channel in an apo-like conformation. We conclude that MHR1/2 acts as a orthostatic ligand-binding site for TRPM2. The NUDT9-H domain binds to a second ADPR to assist channel activation in vertebrates, but not necessary in invertebrates. Our work provides insights into the gating mechanism of human TRPM2 and its pharmacology.

Data availability

All the cryo-EM data generated in this study will be deposited to PDB and EMDB databank.

The following data sets were generated

Article and author information

Author details

  1. Yihe Huang

    Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Becca Roth

    Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wei Lu

    Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, United States
    For correspondence
    wei.lu@vai.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3009-1025
  4. Juan Du

    Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, United States
    For correspondence
    juan.du@vai.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1467-1203

Funding

Esther A. and Joseph Klingenstein Fund (2019 class)

  • Juan Du

McKnight Endowment Fund for Neuroscience (2019 class)

  • Juan Du

National Institutes of Health (R01NS111031)

  • Juan Du

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leon D Islas, Universidad Nacional Autónoma de México, Mexico

Version history

  1. Received: July 12, 2019
  2. Accepted: September 11, 2019
  3. Accepted Manuscript published: September 12, 2019 (version 1)
  4. Version of Record published: September 24, 2019 (version 2)

Copyright

© 2019, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,441
    views
  • 664
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yihe Huang
  2. Becca Roth
  3. Wei Lu
  4. Juan Du
(2019)
Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel
eLife 8:e50175.
https://doi.org/10.7554/eLife.50175

Share this article

https://doi.org/10.7554/eLife.50175

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Shun Kai Yang, Shintaroh Kubo ... Khanh Huy Bui
    Research Article

    Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.