1. Cancer Biology
  2. Cell Biology
Download icon

Activation of Hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin

  1. Qi Deng
  2. Ping Li
  3. Manju Che
  4. Jiajia Liu
  5. Soma Biswas
  6. Gang Ma
  7. Lin He
  8. Zhanying Wei
  9. Zhenlin Zhang
  10. Yingzi Yang
  11. Huijuan Liu  Is a corresponding author
  12. Baojie Li  Is a corresponding author
  1. Shanghai Jiao Tong University, China
  2. Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
  3. Harvard School of Dental Medicine, United States
Research Article
  • Cited 26
  • Views 2,422
  • Annotations
Cite this article as: eLife 2019;8:e50208 doi: 10.7554/eLife.50208

Abstract

Indian Hedgehog (IHH) signaling, a key regulator of skeletal development, is highly activated in cartilage and bone tumors. Yet deletion of Ptch1, encoding an inhibitor of IHH receptor Smoothened (SMO), in chondrocyte or osteoblasts does not cause tumorigenesis. Here, we show that Ptch1 deletion in mice Prrx1+ mesenchymal stem/stromal cells (MSCs) promotes MSC proliferation and osteogenic and chondrogenic differentiation but inhibits adipogenic differentiation. Moreover, Ptch1 deletion led to development of osteoarthritis-like phenotypes, exostoses, enchondroma, and osteosarcoma in Smo-Gli1/2-dependent manners. The cartilage and bone tumors are originated from Prrx1+ lineage cells and express low levels of osteoblast and chondrocyte markers, respectively. Mechanistically, Ptch1 deletion increases the expression of Wnt5a/6 and leads to enhanced b-Catenin activation. Inhibiting Wnt/b-Catenin pathway suppresses development of skeletal anomalies including enchondroma and osteosarcoma. These findings suggest that cartilage/bone tumors arise from their early progenitor cells and identify the Wnt/b-Catenin pathway as a pharmacological target for cartilage/bone neoplasms.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Qi Deng

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ping Li

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Manju Che

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jiajia Liu

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Soma Biswas

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1427-2678
  6. Gang Ma

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Lin He

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhanying Wei

    Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhenlin Zhang

    Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yingzi Yang

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3933-887X
  11. Huijuan Liu

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    liuhj@sjtu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  12. Baojie Li

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    libj@sjtu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3913-1062

Funding

National Natural Science Foundation of China (81373210)

  • Baojie Li

National Natural Science Foundation of China (81520108012)

  • Baojie Li

National Natural Science Foundation of China (91542120)

  • Baojie Li

National Key Research and Development Program of China (2017YFA0103602)

  • Baojie Li

Schaefer Research Scholarship

  • Baojie Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse work was carried out following the recommendations from the NationalResearch Council Guide for the Care and Use of Laboratory Animals, with the protocols approved by the Institutional Animal Care and Use Committee of Shanghai, China [SYXK (SH) 2011-0112]. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Publication history

  1. Received: July 15, 2019
  2. Accepted: August 31, 2019
  3. Accepted Manuscript published: September 4, 2019 (version 1)
  4. Version of Record published: September 27, 2019 (version 2)

Copyright

© 2019, Deng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,422
    Page views
  • 516
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Cell Biology
    Lauren K Williams et al.
    Research Article Updated

    The abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop during an active checkpoint. ACBs are derived from mitotic interchromatin granules, transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed abscission and delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission.

    1. Cancer Biology
    Luca Tirinato et al.
    Research Article

    Although much progress has been made in cancer treatment, the molecular mechanisms underlying cancer radioresistance (RR) as well as the biological signatures of radioresistant cancer cells still need to be clarified. In this regard, we discovered that breast, bladder, lung, neuroglioma and prostate 6 Gy X-ray resistant cancer cells were characterized by an increase of Lipid Droplet (LD) number and that the cells containing highest LDs showed the highest clonogenic potential after irradiation. Moreover, we observed that LD content was tightly connected with the iron metabolism and in particular with the presence of the ferritin heavy chain (FTH1). In fact, breast and lung cancer cells silenced for the FTH1 gene showed a reduction in the LD numbers and, by consequence, became radiosensitive. FTH1 overexpression as well as iron-chelating treatment by Deferoxamine were able to restore the LD amount and RR. Overall, these results provide evidence of a novel mechanism behind RR in which LDs and FTH1 are tightly connected to each other, a synergistic effect which might be worth deeply investigating in order to make cancer cells more radiosensitive and improve the efficacy of radiation treatments.