Release of cholesterol-rich particles from the macrophage plasma membrane during movement of filopodia and lamellipodia

Abstract

Cultured mouse peritoneal macrophages release large numbers of ~30-nm cholesterol-rich particles. Here, we show that those particles represent fragments of the plasma membrane that are pulled away and left behind during the projection and retraction of filopodia and lamellipodia. Consistent with this finding, the particles are enriched in proteins found in focal adhesions, which attach macrophages to the substrate. The release of particles is abolished by blocking cell movement (either by depolymerizing actin with latrunculin A or by inhibiting myosin II with blebbistatin). Confocal microscopy and NanoSIMS imaging studies revealed that the plasma membrane–derived particles are enriched in 'accessible cholesterol' (a mobile pool of cholesterol detectable with the modified cytolysin ALO-D4) but not in sphingolipid-sequestered cholesterol (a pool detectable with ostreolysin A (OlyA)]. The discovery that macrophages release cholesterol-rich particles during cellular locomotion is likely relevant to cholesterol efflux and could contribute to extracellular cholesterol deposition in atherosclerotic plaques.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Xuchen Hu

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0944-624X
  2. Thomas A Weston

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Cuiwen He

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Rachel S Jung

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Patrick J Heizer

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Brian D Young

    Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Yiping Tu

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Peter Tontonoz

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    Peter Tontonoz, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1259-0477
  9. James A Wohlschlegel

    Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Haibo Jiang

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    haibo.jiang@uwa.edu.au
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2384-4826
  11. Stephen G Young

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    sgyoung@mednet.ucla.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7270-3176
  12. Loren G Fong

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    lfong@mednet.ucla.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4465-5290

Funding

National Heart, Lung, and Blood Institute (HL090553)

  • Stephen G Young

National Heart, Lung, and Blood Institute (HL087228)

  • Stephen G Young

National Heart, Lung, and Blood Institute (HL125335))

  • Stephen G Young

Fondation Leducq (12CVD04).)

  • Stephen G Young

Ruth L Kirschstein National Research Service Award (T32HL69766))

  • Xuchen Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal housing and experimental protocols were approved by UCLA's Animal Research Committee (ARC; 2004-125-51). The animals were housed in an AAALAC (Association for Assessment andAccreditation of Laboratory Animal Care International)-approved facility and cared for accordingto guidelines established by UCLA's Animal Research Committee.

Reviewing Editor

  1. Fredric B Kraemer, Stanford University, United States

Publication history

  1. Received: July 16, 2019
  2. Accepted: September 4, 2019
  3. Accepted Manuscript published: September 5, 2019 (version 1)
  4. Version of Record published: September 18, 2019 (version 2)

Copyright

© 2019, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,737
    Page views
  • 250
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xuchen Hu
  2. Thomas A Weston
  3. Cuiwen He
  4. Rachel S Jung
  5. Patrick J Heizer
  6. Brian D Young
  7. Yiping Tu
  8. Peter Tontonoz
  9. James A Wohlschlegel
  10. Haibo Jiang
  11. Stephen G Young
  12. Loren G Fong
(2019)
Release of cholesterol-rich particles from the macrophage plasma membrane during movement of filopodia and lamellipodia
eLife 8:e50231.
https://doi.org/10.7554/eLife.50231
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Brandon Wey-Hung Liauw et al.
    Research Article

    Activation of G protein-coupled receptors (GPCRs) is an allosteric process. It involves conformational coupling between the orthosteric ligand binding site and the G protein binding site. Factors that bind at non-cognate ligand binding sites to alter the allosteric activation process are classified as allosteric modulators and represent a promising class of therapeutics with distinct modes of binding and action. For many receptors, how modulation of signaling is represented at the structural level is unclear. Here, we developed FRET sensors to quantify receptor modulation at each of the three structural domains of metabotropic glutamate receptor 2 (mGluR2). We identified the conformational fingerprint for several allosteric modulators in live cells. This approach enabled us to derive a receptor-centric representation of allosteric modulation and to correlate structural modulation to the standard signaling modulation metrics. Single-molecule FRET analysis revealed that a NAM increases the occupancy of one of the intermediate states while a PAM increases the occupancy of the active state. Moreover, we found that the effect of allosteric modulators on the receptor dynamics is complex and depend on the orthosteric ligand. Collectively, our findings provide a structural mechanism of allosteric modulation in mGluR2 and suggest possible strategies for design of future modulators.

    1. Biochemistry and Chemical Biology
    Eugene Serebryany et al.
    Research Article Updated

    Cataract is one of the most prevalent protein aggregation disorders and still the most common cause of vision loss worldwide. The metabolically quiescent core region of the human lens lacks cellular or protein turnover; it has therefore evolved remarkable mechanisms to resist light-scattering protein aggregation for a lifetime. We now report that one such mechanism involves an unusually abundant lens metabolite, myo-inositol, suppressing aggregation of lens crystallins. We quantified aggregation suppression using our previously well-characterized in vitro aggregation assays of oxidation-mimicking human γD-crystallin variants and investigated myo-inositol’s molecular mechanism of action using solution NMR, negative-stain TEM, differential scanning fluorometry, thermal scanning Raman spectroscopy, turbidimetry in redox buffers, and free thiol quantitation. Unlike many known chemical chaperones, myo-inositol’s primary target was not the native, unfolded, or final aggregated states of the protein; rather, we propose that it was the rate-limiting bimolecular step on the aggregation pathway. Given recent metabolomic evidence that it is severely depleted in human cataractous lenses compared to age-matched controls, we suggest that maintaining or restoring healthy levels of myo-inositol in the lens may be a simple, safe, and globally accessible strategy to prevent or delay lens opacification due to age-onset cataract.