Mechanisms of hyperexcitability in Alzheimer's disease hiPSC-derived neurons and cerebral organoids vs. isogenic control

  1. Swagata Ghatak
  2. Nima Dolatabadi
  3. Dorit Trudler
  4. XiaoTong Zhang
  5. Yin Wu
  6. Madhav Mohata
  7. Rajesh Ambasudhan
  8. Maria Talantova
  9. Stuart A Lipton  Is a corresponding author
  1. The Scripps Research Institute, United States
  2. Scintillon Institute, United States

Abstract

Human Alzheimer's disease (AD) brains and transgenic AD mouse models manifest hyperexcitability. This aberrant electrical activity is caused by synaptic dysfunction that represents the major pathophysiological correlate of cognitive decline. However, the underlying mechanism for this excessive excitability remains incompletely understood. To investigate the basis for the hyperactivity, we performed electrophysiological and immunofluorescence studies on hiPSC-derived cerebrocortical neuronal cultures and cerebral organoids bearing AD-related mutations in presenilin 1 or amyloid precursor protein vs. isogenic gene corrected controls. In the AD hiPSC-derived neurons/organoids, we found increased excitatory bursting activity, which could be explained in part by a decrease in neurite length. AD hiPSC-derived neurons also displayed increased sodium current density and increased excitatory and decreased inhibitory synaptic activity. Our findings establish hiPSC-derived AD neuronal cultures and organoids as a relevant model of early AD pathophysiology and provide mechanistic insight into the observed hyperexcitability.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Swagata Ghatak

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nima Dolatabadi

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dorit Trudler

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5835-3322
  4. XiaoTong Zhang

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yin Wu

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Madhav Mohata

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Rajesh Ambasudhan

    Neurodegenerative Disease Center, Scintillon Institute, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Maria Talantova

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Stuart A Lipton

    Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, United States
    For correspondence
    slipton@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3490-1259

Funding

National Institutes of Health (P01 HD29587)

  • Stuart A Lipton

National Institute of Neurological Disorders and Stroke (Core grant P30 NS076411)

  • Stuart A Lipton

National Institutes of Health (DP1 DA041722)

  • Stuart A Lipton

National Institutes of Health (R01 NS086890)

  • Stuart A Lipton

National Institutes of Health (R01 AG056259)

  • Stuart A Lipton

National Institutes of Health (RF1 AG057409)

  • Stuart A Lipton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Ghatak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,031
    views
  • 1,370
    downloads
  • 167
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Swagata Ghatak
  2. Nima Dolatabadi
  3. Dorit Trudler
  4. XiaoTong Zhang
  5. Yin Wu
  6. Madhav Mohata
  7. Rajesh Ambasudhan
  8. Maria Talantova
  9. Stuart A Lipton
(2019)
Mechanisms of hyperexcitability in Alzheimer's disease hiPSC-derived neurons and cerebral organoids vs. isogenic control
eLife 8:e50333.
https://doi.org/10.7554/eLife.50333

Share this article

https://doi.org/10.7554/eLife.50333

Further reading

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.