1. Biochemistry and Chemical Biology
  2. Neuroscience
Download icon

Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo

  1. Kai Xie
  2. Naixiang Wang
  3. Xudong Lin
  4. Zixun Wang
  5. Xi Zhao
  6. Peilin Fang
  7. Haibing Yue
  8. Junhwi Kim
  9. Jing Luo
  10. Shaoyang Cui
  11. Feng Yan  Is a corresponding author
  12. Peng Shi  Is a corresponding author
  1. City University of Hong Kong, China
  2. The Hong Kong Polytechnic University, Hong Kong
  3. City University of Hong Kong, Hong Kong
  4. Shenzhen Hospital of Guangzhou University of Chinese Medicine, China
Research Article
  • Cited 9
  • Views 2,444
  • Annotations
Cite this article as: eLife 2020;9:e50345 doi: 10.7554/eLife.50345

Abstract

Though neurotransmitters are essential in neural signal transmission, techniques for in vivo analysis are still limited. Here, we describe an organic electrochemical transistor array (OECT-array) technique for monitoring catecholamine neurotransmitters (CA-NTs) in rat brains. The OECT-array is an active sensor with intrinsic amplification capability, allowing real-time and direct readout of transient CA-NT release with a sensitivity of nanomolar range and a temporal resolution of several milliseconds. The device has a working voltage lower than half of that typically used in a prevalent cyclic voltammetry measurement, and operates continuously in vivo for hours without significant signal drift, which is inaccessible for existing methods. With the OECT-array, we demonstrate simultaneous mapping of evoked dopamine release at multiple striatal brain regions in different physiological scenarios, and reveal a complex cross-talk between mesolimbic and nigrostriatal pathways, which is heterogeneously affected by the reciprocal innervation between ventral tegmental area and substantia nigra pars compacta.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided as supplementary files.

Article and author information

Author details

  1. Kai Xie

    Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Naixiang Wang

    Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  3. Xudong Lin

    Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  4. Zixun Wang

    Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  5. Xi Zhao

    Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  6. Peilin Fang

    Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  7. Haibing Yue

    Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  8. Junhwi Kim

    Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  9. Jing Luo

    Department of Rehabilitation, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Shaoyang Cui

    Department of Rehabilitation, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Feng Yan

    Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
    For correspondence
    apafyan@polyu.edu.hk
    Competing interests
    The authors declare that no competing interests exist.
  12. Peng Shi

    Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
    For correspondence
    pengshi@cityu.edu.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0629-4161

Funding

General Research Funds (11278616)

  • Peng Shi

General Research Funds (11218015)

  • Peng Shi

General Research Funds (11203017)

  • Peng Shi

Health and Medical Research Fund (06172336)

  • Peng Shi

Collaborative Research Funds (C5015-15G)

  • Feng Yan
  • Peng Shi

The funders provided resources for the study design, data collection, and interpretation.

Ethics

Animal experimentation: All experimental procedures involving animals were approved by the university Animal Ethics Committee. Animal licenses, (16-97) in DH/HA&P/8/2/5 Pt.5 and (18-129) in DH/SHS/8/2/5 Pt.4, were approved by Department of Health of the Government of Hong Kong Special Administration Region.

Reviewing Editor

  1. Mehmet Fatih Yanik, Massachusetts Institute of Technology, United States

Publication history

  1. Received: July 19, 2019
  2. Accepted: February 10, 2020
  3. Accepted Manuscript published: February 11, 2020 (version 1)
  4. Version of Record published: March 16, 2020 (version 2)

Copyright

© 2020, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,444
    Page views
  • 363
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Urszula Nowicka et al.
    Research Article Updated

    Mitochondria are organelles with their own genomes, but they rely on the import of nuclear-encoded proteins that are translated by cytosolic ribosomes. Therefore, it is important to understand whether failures in the mitochondrial uptake of these nuclear-encoded proteins can cause proteotoxic stress and identify response mechanisms that may counteract it. Here, we report that upon impairments in mitochondrial protein import, high-risk precursor and immature forms of mitochondrial proteins form aberrant deposits in the cytosol. These deposits then cause further cytosolic accumulation and consequently aggregation of other mitochondrial proteins and disease-related proteins, including α-synuclein and amyloid β. This aggregation triggers a cytosolic protein homeostasis imbalance that is accompanied by specific molecular chaperone responses at both the transcriptomic and protein levels. Altogether, our results provide evidence that mitochondrial dysfunction, specifically protein import defects, contributes to impairments in protein homeostasis, thus revealing a possible molecular mechanism by which mitochondria are involved in neurodegenerative diseases.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Zdravka Daneva et al.
    Research Article Updated

    Pannexin 1 (Panx1), an ATP-efflux pathway, has been linked with inflammation in pulmonary capillaries. However, the physiological roles of endothelial Panx1 in the pulmonary vasculature are unknown. Endothelial transient receptor potential vanilloid 4 (TRPV4) channels lower pulmonary artery (PA) contractility and exogenous ATP activates endothelial TRPV4 channels. We hypothesized that endothelial Panx1–ATP–TRPV4 channel signaling promotes vasodilation and lowers pulmonary arterial pressure (PAP). Endothelial, but not smooth muscle, knockout of Panx1 increased PA contractility and raised PAP in mice. Flow/shear stress increased ATP efflux through endothelial Panx1 in PAs. Panx1-effluxed extracellular ATP signaled through purinergic P2Y2 receptor (P2Y2R) to activate protein kinase Cα (PKCα), which in turn activated endothelial TRPV4 channels. Finally, caveolin-1 provided a signaling scaffold for endothelial Panx1, P2Y2R, PKCα, and TRPV4 channels in PAs, promoting their spatial proximity and enabling signaling interactions. These results indicate that endothelial Panx1–P2Y2R–TRPV4 channel signaling, facilitated by caveolin-1, reduces PA contractility and lowers PAP in mice.