1. Neuroscience
Download icon

Temporal cascade of frontal, motor and muscle processes underlying human action-stopping

  1. Sumitash Jana  Is a corresponding author
  2. Ricci Hannah  Is a corresponding author
  3. Vignesh Muralidharan
  4. Adam R Aron
  1. University of California, San Diego, United States
Research Article
  • Cited 2
  • Views 1,196
  • Annotations
Cite this article as: eLife 2020;9:e50371 doi: 10.7554/eLife.50371


Action-stopping is a canonical executive function thought to involve top-down control over the motor system. Here we aimed to validate this stopping system using high temporal resolution methods in humans. We show that, following the requirement to stop, there was an increase of right frontal beta (~13 to 30 Hz) at ~120 ms, likely a proxy of right inferior frontal gyrus; then, at 140 ms, there was a broad skeletomotor suppression, likely reflecting the impact of the subthalamic nucleus on basal ganglia output; then, at ~160 ms, suppression was detected in the muscle, and, finally, the behavioral time of stopping was ~220 ms. This temporal cascade supports a physiological model of action-stopping, and partitions it into subprocesses that are isolable to different nodes and are more precise than the behavioral latency of stopping. Variation in these subprocesses, including at the single-trial level, could better explain individual differences in impulse control.

Article and author information

Author details

  1. Sumitash Jana

    Department of Psychology, University of California, San Diego, San Diego, United States
    For correspondence
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3742-3958
  2. Ricci Hannah

    Department of Psychology, University of California, San Diego, San Diego, United States
    For correspondence
    Competing interests
    No competing interests declared.
  3. Vignesh Muralidharan

    Department of Psychology, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  4. Adam R Aron

    Department of Psychology, University of California, San Diego, San Diego, United States
    Competing interests
    Adam R Aron, Reviewing editor, eLife.


National Institutes of Health (NS 106822,DA 026452)

  • Sumitash Jana
  • Ricci Hannah
  • Vignesh Muralidharan
  • Adam R Aron

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Human subjects: All human volunteers provided written informed consent prior to their participation. The participants were compensated at $20/hour. The University of California San Diego Institutional Review Board approved all the studies (protocol #171285).

Reviewing Editor

  1. Wery van den Wildenberg, Universiteit van Amsterdam, Netherlands

Publication history

  1. Received: July 20, 2019
  2. Accepted: March 17, 2020
  3. Accepted Manuscript published: March 18, 2020 (version 1)
  4. Version of Record published: April 15, 2020 (version 2)


© 2020, Jana et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,196
    Page views
  • 229
  • 2

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Víctor J López-Madrona et al.
    Research Article Updated

    Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is commonly studied as a unique coherent oscillation, it is the result of complex interactions between different rhythm generators. Here, by separating hippocampal theta activity in three different current generators, we found epochs with variable theta frequency and phase coupling, suggesting flexible interactions between theta generators. We found that epochs of highly synchronized theta rhythmicity preferentially occurred during behavioral tasks requiring coordination between internal memory representations and incoming sensory information. In addition, we found that gamma oscillations were associated with specific theta generators and the strength of theta-gamma coupling predicted the synchronization between theta generators. We propose a mechanism for segregating or integrating hippocampal computations based on the flexible coordination of different theta frameworks to accommodate the cognitive needs.

    1. Neuroscience
    Kyle Jasmin et al.
    Research Article

    Individuals with congenital amusia have a lifelong history of unreliable pitch processing. Accordingly, they downweight pitch cues during speech perception and instead rely on other dimensions such as duration. We investigated the neural basis for this strategy. During fMRI, individuals with amusia (N=15) and controls (N=15) read sentences where a comma indicated a grammatical phrase boundary. They then heard two sentences spoken that differed only in pitch and/or duration cues, and selected the best match for the written sentence. Prominent reductions in functional connectivity were detected in the amusia group, between left prefrontal language-related regions and right hemisphere pitch-related regions, which reflected the between-group differences in cue weights in the same groups of listeners. Connectivity differences between these regions were not present during a control task. Our results indicate that the reliability of perceptual dimensions is linked with functional connectivity between frontal and perceptual regions, and suggest a compensatory mechanism.