Temporal cascade of frontal, motor and muscle processes underlying human action-stopping

  1. Sumitash Jana  Is a corresponding author
  2. Ricci Hannah  Is a corresponding author
  3. Vignesh Muralidharan
  4. Adam R Aron
  1. University of California, San Diego, United States

Abstract

Action-stopping is a canonical executive function thought to involve top-down control over the motor system. Here we aimed to validate this stopping system using high temporal resolution methods in humans. We show that, following the requirement to stop, there was an increase of right frontal beta (~13 to 30 Hz) at ~120 ms, likely a proxy of right inferior frontal gyrus; then, at 140 ms, there was a broad skeletomotor suppression, likely reflecting the impact of the subthalamic nucleus on basal ganglia output; then, at ~160 ms, suppression was detected in the muscle, and, finally, the behavioral time of stopping was ~220 ms. This temporal cascade supports a physiological model of action-stopping, and partitions it into subprocesses that are isolable to different nodes and are more precise than the behavioral latency of stopping. Variation in these subprocesses, including at the single-trial level, could better explain individual differences in impulse control.

Data availability

A core element of this paper is a novel method of calculating single-trial stopping speed from EMG. Accordingly, we provide the EMG and behavioral data from 10 participants in study 1, along with analysis scripts, and a brief description of how to execute the scripts (https://osf.io/b2ng5/).

The following data sets were generated

Article and author information

Author details

  1. Sumitash Jana

    Department of Psychology, University of California, San Diego, San Diego, United States
    For correspondence
    s2jana@ucsd.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3742-3958
  2. Ricci Hannah

    Department of Psychology, University of California, San Diego, San Diego, United States
    For correspondence
    rhannah@ucsd.edu
    Competing interests
    No competing interests declared.
  3. Vignesh Muralidharan

    Department of Psychology, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  4. Adam R Aron

    Department of Psychology, University of California, San Diego, San Diego, United States
    Competing interests
    Adam R Aron, Reviewing editor, eLife.

Funding

National Institutes of Health (NS 106822,DA 026452)

  • Sumitash Jana
  • Ricci Hannah
  • Vignesh Muralidharan
  • Adam R Aron

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wery van den Wildenberg, Universiteit van Amsterdam, Netherlands

Ethics

Human subjects: All human volunteers provided written informed consent prior to their participation. The participants were compensated at $20/hour. The University of California San Diego Institutional Review Board approved all the studies (protocol #171285).

Version history

  1. Received: July 20, 2019
  2. Accepted: March 17, 2020
  3. Accepted Manuscript published: March 18, 2020 (version 1)
  4. Version of Record published: April 15, 2020 (version 2)

Copyright

© 2020, Jana et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,968
    Page views
  • 432
    Downloads
  • 77
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sumitash Jana
  2. Ricci Hannah
  3. Vignesh Muralidharan
  4. Adam R Aron
(2020)
Temporal cascade of frontal, motor and muscle processes underlying human action-stopping
eLife 9:e50371.
https://doi.org/10.7554/eLife.50371

Share this article

https://doi.org/10.7554/eLife.50371

Further reading

    1. Neuroscience
    Sydney Trask, Nicole C Ferrara
    Insight

    Gradually reducing a source of fear during extinction treatments may weaken negative memories in the long term.

    1. Cell Biology
    2. Neuroscience
    Haibin Yu, Dandan Liu ... Kai Yuan
    Research Article

    O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.