A proline-rich motif on VGLUT1 reduces synaptic vesicle super-pool and spontaneous release frequency

  1. Xiao Min Zhang
  2. Urielle François
  3. Kätlin Silm
  4. Maria Florencia Angelo
  5. Maria Victoria Fernandez-Busch
  6. Mona Maged
  7. Christelle Martin
  8. Véronique Bernard
  9. Fabrice P Cordelières
  10. Melissa Deshors
  11. Stéphanie Pons
  12. Uwe Maskos
  13. Alexis Pierre Bemelmans
  14. Sonja M Wojcik
  15. Salah El Mestikawy
  16. Yann Humeau
  17. Etienne Herzog  Is a corresponding author
  1. CNRS - Université de Bordeaux, France
  2. CNRS - INSERM - Université Pierre et Marie Curie, France
  3. Institut Pasteur, France
  4. CNRS, Université Paris-Sud, Université Paris-Saclay, France
  5. Max-Planck-Institut fuer Experimentelle Medizin, Germany

Abstract

Glutamate secretion at excitatory synapses is tightly regulated to allow for the precise tuning of synaptic strength. Vesicular Glutamate Transporters (VGLUT) accumulate glutamate into synaptic vesicles (SV) and thereby regulate quantal size. Further, the number of release sites and the release probability of SVs maybe regulated by the organization of active zone proteins and SV clusters. In the present work, we uncover a mechanism mediating an increased SV clustering through the interaction of VGLUT1 second proline-rich domain, endophilinA1 and intersectin1. This strengthening of SV clusters results in a combined reduction of axonal SV super-pool size and miniature excitatory events frequency. Our findings support a model in which clustered vesicles are held together through multiple weak interactions between Src homology 3 and proline-rich domains of synaptic proteins. In mammals, VGLUT1 gained a proline-rich sequence that recruits endophilinA1 and turns the transporter into a regulator of SV organization and spontaneous release.

Data availability

Raw measures and intermediate data processing of images and electrophysiology traces are submited in source files appended to this submission.Source images and electrophysiology traces reported in this study are fully available upon request to the corresponding author (Etienne Herzog - https://orcid.org/0000-0002-0058-6959).

Article and author information

Author details

  1. Xiao Min Zhang

    Interdisciplinary Institute for Neuroscience, CNRS - Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Urielle François

    Interdisciplinary Institute for Neuroscience, CNRS - Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Kätlin Silm

    Neurosciences Paris Seine, CNRS - INSERM - Université Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Florencia Angelo

    Interdisciplinary Institute for Neuroscience, CNRS - Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Maria Victoria Fernandez-Busch

    Interdisciplinary Institute for Neuroscience, CNRS - Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Mona Maged

    Interdisciplinary Institute for Neuroscience, CNRS - Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Christelle Martin

    Interdisciplinary Institute for Neuroscience, CNRS - Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Véronique Bernard

    Neurosciences Paris Seine, CNRS - INSERM - Université Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Fabrice P Cordelières

    Bordeaux Imaging Center, CNRS - Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5383-5816
  10. Melissa Deshors

    Interdisciplinary Institute for Neuroscience, CNRS - Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Stéphanie Pons

    Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, Department of Neuroscience, CNRS UMR 3571, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1027-0621
  12. Uwe Maskos

    Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, Department of Neuroscience, CNRS UMR 3571, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Alexis Pierre Bemelmans

    Neurodegenerative Diseases Laboratory, CNRS, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Sonja M Wojcik

    Department of Molecular Neurobiology, Max-Planck-Institut fuer Experimentelle Medizin, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Salah El Mestikawy

    Neurosciences Paris Seine, CNRS - INSERM - Université Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Yann Humeau

    Interdisciplinary Institute for Neuroscience, CNRS - Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Etienne Herzog

    Interdisciplinary Institute for Neuroscience, CNRS - Université de Bordeaux, Bordeaux, France
    For correspondence
    etienne.herzog@u-bordeaux.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0058-6959

Funding

Agence Nationale de la Recherche (ANR-12-JSV4-0005-01 VGLUT-IQ)

  • Etienne Herzog

Agence Nationale de la Recherche (ANR-10-LABX-43 BRAIN)

  • Yann Humeau
  • Etienne Herzog

Agence Nationale de la Recherche (ANR-10-IDEX-03-02 PEPS SV-PIT)

  • Etienne Herzog

Agence Nationale de la Recherche (PSYVGLUT 09-MNPS-033)

  • Salah El Mestikawy

Agence Nationale de la Recherche (ANR-10-INBS-04)

  • Fabrice P Cordelières

European Commission (Erasmus-Mundus European Neuroscience Campus Program)

  • Xiao Min Zhang
  • Etienne Herzog

Fondation pour la Recherche Médicale (FDT20120925288)

  • Kätlin Silm

Fondation pour la Recherche Médicale (ING20150532192)

  • Maria Florencia Angelo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental design and all procedures were in accordance with the European guide for the care and use of laboratory animals, approved by the ethics committee of Bordeaux Universities (CE50), and registered with the french ministry for research under the APAFIS n{degree sign}1692. Every effort was made to minimize the number of animals used and their suffering.

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,555
    views
  • 404
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiao Min Zhang
  2. Urielle François
  3. Kätlin Silm
  4. Maria Florencia Angelo
  5. Maria Victoria Fernandez-Busch
  6. Mona Maged
  7. Christelle Martin
  8. Véronique Bernard
  9. Fabrice P Cordelières
  10. Melissa Deshors
  11. Stéphanie Pons
  12. Uwe Maskos
  13. Alexis Pierre Bemelmans
  14. Sonja M Wojcik
  15. Salah El Mestikawy
  16. Yann Humeau
  17. Etienne Herzog
(2019)
A proline-rich motif on VGLUT1 reduces synaptic vesicle super-pool and spontaneous release frequency
eLife 8:e50401.
https://doi.org/10.7554/eLife.50401

Share this article

https://doi.org/10.7554/eLife.50401

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.